Request for consultation

Thanks for your request. You’ll soon be chatting with a consultant to get the answers you need.
{{formPostErrorMessage.message}} [{{formPostErrorMessage.code}}]
First Name is required. 'First Name' must contain at least 0 characters 'First Name' cannot exceed 0 characters Please enter a valid First Name
Last Name is required. 'Last Name' must contain at least 0 characters 'Last Name' cannot exceed 0 characters Please enter a valid Last Name
Institution is required.
Discipline is required.
Why are you contacting us today? is required. 'Why are you contacting us today?' must contain at least 0 characters 'Why are you contacting us today?' cannot exceed 0 characters Please enter a valid Why are you contacting us today?


MECHANISMS AND MACHINES: KINEMATICS, DYNAMICS, AND SYNTHESIS has been designed to serve as a core textbook for the mechanisms and machines course, targeting junior level mechanical engineering students. The book is written with the aim of providing a complete, yet concise, text that can be covered in a single-semester course. The primary goal of the text is to introduce students to the synthesis and analysis of planar mechanisms and machines, using a method well suited to computer programming, known as the Vector Loop Method. Author Michael Stanisic's approach of teaching synthesis first, and then going into analysis, will enable students to actually grasp the mathematics behind mechanism design. The book uses the vector loop method and kinematic coefficients throughout the text, and exhibits a seamless continuity in presentation that is a rare find in engineering texts. The multitude of examples in the book cover a large variety of problems and delineate an excellent problem solving methodology.

Michael M. Stanisic, University of Notre Dame

Michael M. Stanisic earned the B.S.M.E., M.S.M.E. and Ph.D. degrees from Purdue University. Since 1988, he has been teaching and researching machine and manipulator design at the University of Notre Dame. He holds several patents on dextrous and singularity-free manipulator designs, which were developed with support from the National Science Foundation. He has published a number of papers concerning the application of Curvature Theory to the synthesis of mechanisms and to the control of robotic manipulators. In collaboration with the J. Stefan Institute, he has developed new types of humanoid shoulder mechanisms that include effects of human scapular motion. He has served several terms on the Mechanisms Committee of the American Society of Mechanical Engineers and has been a member of the International Scientific Committee for Advances in Robot Kinematics since 1988. At the University of Notre Dame, he has received numerous teaching awards at the departmental, college and university-wide levels.
  • A large number of automotive-based examples are included in the text -- these examples are a highly engaging feature for students.
  • This is the only text that consistently uses the Vector Loop method throughout the text.
  • Subject matter presented entirely in terms of kinematic coefficients, including geartrains, mechanical advantage, limit positions and dead positions.
  • Final two chapters deal with mechanism synthesis and stand apart from the first seven chapters which focus entirely on analysis.
1. Introduction.
Joints. Skeleton Diagrams. Examples of Skeleton Diagrams. Mechanisms and Machines. Gruebler's Criterion and Degrees of Freedom. Mobility. Grashof's Criterion. Exercises.
2. Kinematic Analysis.
Closed-Form Solutions the Position Equations. Numerical Solutions to Position Equations via Newton's Method. The Motion of Points of Interest. Exercises. Programming Problems. Appendix I: Derivation of the Double Angle Formulas. Appendix II: Derivation of the Tangent of the Half Angle Formulas. Appendix III: Matlab Code Used in Example 2.10 Demonstrating Newtons' Method.
3. Kinematic Analysis.
Externally Contacting Rolling Bodies. Internally Contacting Rolling Bodies. One Body with a Flat Surface. Assembly Configuration. Geartrains. Exercises. Appendix I: The Involute Tooth Profile.
4. Kinematic Analysis.
Time-Based Velocity and Acceleration Analysis of the Four Bar Mechanism. Kinematic Coefficients. Finding Dead Positions Using Kinematic Coefficients. Finding Limit Positions Using Kinematic Coefficients. Kinematic Coefficients of Points of Interest. Kinematic Coefficients of Geartrains. Exercises. Programming Problems.
5. Machine Dynamics.
Review of Planar Kinetics. Three-Dimensional Aspects in the Force Analysis of Planar Machines. Static Force Analysis and Inertia Force Analysis. Force Analysis of Rolling Contacts. Exercises. Appendix I: Kinematic Analysis for Examples in Section 5.1 (Example 5.2) and Section. Appendix II: Computing the accelerations of the mass centers of the composite shapes in the example of Section
6. Machine Dynamics.
Friction in a Pin Joint. Friction in a Pin in a Slot Joint. Friction in a Straight Sliding Joint. Exercises.
7. Machine Dynamics.
Development of the Power Equation. Power Equation and the Inverse Dynamics Problem. Power Equation and the Forward Dynamics Problem. Mechanical Advantage. Efficiency and Mechanical Advantage. Exercises. Programming Problems. Programming Problems - Designing the Drive System of an Air Compressor. Designing the Drive System of a Fail-Safe Quick Valve Shut Off System. Design Problems.
8. Mechanism Synthesis.
Freudenstein's Equation for the Four Bar Mechanism. Freudenstein's Equation for the Crank-Slider Mechanism. Design Problems.
9. Mechanism Synthesis.
Mathematical Model of a Planar Rigid Body Displacement. The Three-Position Problem. The Four-Position and Five-Position Problems. Design Problems.
Each MindTap product offers the full, mobile-ready textbook combined with superior and proven learning tools at one affordable price. Students who purchase digital access can add a print option at any time when a print option is available for their course.

This Cengage solution can be seamlessly integrated into most Learning Management Systems (Blackboard, Brightspace by D2L, Canvas, Moodle, and more) but does require a different ISBN for access codes. Please work with your Cengage Learning Consultant to ensure the proper course set up and ordering information. For additional information, please visit the LMS Integration site.

Standalone Digital Access — Ultimate Value

Recommended and most popular

  • ISBN-10: 1305498712
  • ISBN-13: 9781305498716
  • Bookstore Wholesale Price $95.00
  • RETAIL $95.00

  • ISBN-10: 1305498704
  • ISBN-13: 9781305498709
  • Bookstore Wholesale Price $95.00
  • RETAIL $95.00

  • ISBN-10: 128585795X
  • ISBN-13: 9781285857954
  • Bookstore Wholesale Price $140.00
  • RETAIL $140.00

Digital Access + Print — Flexible Value

Recommended and most popular

  • ISBN-10: 1305614410
  • ISBN-13: 9781305614413
  • Bookstore Wholesale Price $142.50
  • RETAIL $189.95

Textbook Only Options

Traditional eBook and Print Options

{{collapseContainerClosed['detail_0'] ? 'Show More' : 'Show Less'}}

  • ISBN-10: 1305356209
  • ISBN-13: 9781305356207
  • STARTING AT $24.49

  • ISBN-10: 1133943918
  • ISBN-13: 9781133943914
  • Bookstore Wholesale Price $122.50
  • RETAIL $162.95

"I believe that the authors are doing an excellent job of paying attention to the audience. Considering that this text is meant for a junior level course, I particularly enjoy that there are sections where the authors are not holding the reader's hand throughout the discussion which will force the reader (student) to think about what exactly is going on. But when fundamental concepts are introduced, there is a very thorough explanation accompanied by detailed examples that would be useful for a student seeing the material for the very first time."

"The approach of using synthesis to motivate the study of analysis is meritorious. The vector loop and kinematic coefficient theory that is utilized throughout is modern and well suited to software implementation. This appeals to me as a user of such a text."