Safety Factor Profile Control in a Tokamak, 1st Edition

  • Published By:
  • ISBN-10: 3319019589
  • ISBN-13: 9783319019581
  • DDC: 621.484
  • Grade Level Range: College Freshman - College Senior
  • 96 Pages | eBook
  • Original Copyright 2014 | Published/Released June 2014
  • This publication's content originally published in print form: 2014

  • Price:  Sign in for price



Control of the Safety Factor Profile in a Tokamak uses Lyapunov techniques to address a challenging problem for which even the simplest physically relevant models are represented by nonlinear, time-dependent, partial differential equations (PDEs). This is because of the spatiotemporal dynamics of transport phenomena (magnetic flux, heat, densities, etc.) in the anisotropic plasma medium.Robustness considerations are ubiquitous in the analysis and control design since direct measurements on the magnetic flux are impossible (its estimation relies on virtual sensors) and large uncertainties remain in the coupling between the plasma particles and the radio-frequency waves (distributed inputs).The Brief begins with a presentation of the reference dynamical model and continues by developing a Lyapunov function for the discretized system (in a polytopic linear-parameter-varying formulation). The limitations of this finite-dimensional approach motivate new developments in the infinite-dimensional framework. The text then tackles the construction of an input-to-state-stability Lyapunov function for the infinite-dimensional system that handles the medium anisotropy and provides a common basis for analytical robustness results. This function is used as a control-Lyapunov function and allows the amplitude and nonlinear shape constraints in the control action to be dealt with.Finally, the Brief addresses important application- and implementation-specific concerns. In particular, the coupling of the PDE and the finite-dimensional subsystem representing the evolution of the boundary condition (magnetic coils) and the introduction of profile-reconstruction delays in the control loop (induced by solving a 2-D inverse problem for computing the magnetic flux) is analyzed. Simulation results are presented for various operation scenarios.

Table of Contents

Front Cover.
Editorial Board.
Title Page.
Copyright Page.
Editors' Biography.
1: Mathematical Model of the Safety Factor and Control Problem Formulation.
2: A Polytopic LPV Approach for Finite-Dimensional Control.
3: Infinite-Dimensional Control-Lyapunov Function.
4: Controller Implementation.
5: Conclusion.
Finding a Lyapunov Function.
List of Acronyms, Physical Variables and Symbols.