Nanowire Field Effect Transistors: Principles and Applications, 1st Edition

  • Published By:
  • ISBN-10: 1461481244
  • ISBN-13: 9781461481249
  • DDC: 620.5
  • Grade Level Range: College Freshman - College Senior
  • 290 Pages | eBook
  • Original Copyright 2014 | Published/Released May 2014
  • This publication's content originally published in print form: 2014

  • Price:  Sign in for price



"Nanowire Field Effect Transistor: Basic Principles and Applications" places an emphasis on the application aspects of nanowire field effect transistors (NWFET). Device physics and electronics are discussed in a compact manner, together with the p-n junction diode and MOSFET, the former as an essential element in NWFET and the latter as a general background of the FET. During this discussion, the photo-diode, solar cell, LED, LD, DRAM, flash EEPROM and sensors are highlighted to pave the way for similar applications of NWFET. Modeling is discussed in close analogy and comparison with MOSFETs. Contributors focus on processing, electrostatic discharge (ESD) and application of NWFET. This includes coverage of solar and memory cells, biological and chemical sensors, displays and atomic scale light emitting diodes. Appropriate for scientists and engineers interested in acquiring a working knowledge of NWFET as well as graduate students specializing in this subject.

Table of Contents

Front Cover.
Half Title Page.
Title Page.
Copyright Page.
1: Quantum Wire and Sub-Bands.
2: Carrier Concentration and Transport.
3: P–N Junction Diode: I–V Behavior and Applications.
4: Silicon Nanowire Field-Effect Transistor.
5: Fabrication of Nanowires and Their Applications.
6: Characterization of Nanowire Devices under Electrostatic Discharge Stress Conditions.
7: Green Energy Devices.
8: Nanowire Field Effect Transistors in Optoelectronics.
9: Nanowire BioFETs: An Overview.
10: Lab on a Wire: Application of Silicon Nanowires for Nanoscience and Biotechnology.
11: Nanowire Fet Circuit Design: An Overview.