Stability of Vector Differential Delay Equations, 1st Edition

  • Published By:
  • ISBN-10: 3034805772
  • ISBN-13: 9783034805773
  • DDC: 515.35
  • Grade Level Range: College Freshman - College Senior
  • 259 Pages | eBook
  • Original Copyright 2013 | Published/Released June 2014
  • This publication's content originally published in print form: 2013

  • Price:  Sign in for price



Differential equations with delay naturally arise in various applications, such as control systems, viscoelasticity, mechanics, nuclear reactors, distributed networks, heat flows, neural networks, combustion, interaction of species, microbiology, learning models, epidemiology, physiology, and many others. This book systematically investigates the stability of linear as well as nonlinear vector differential equations with delay and equations with causal mappings. It presents explicit conditions for exponential, absolute and input-to-state stabilities. These stability conditions are mainly formulated in terms of the determinants and eigenvalues of auxiliary matrices dependent on a parameter; the suggested approach allows us to apply the well-known results of the theory of matrices. In addition, solution estimates for the considered equations are established which provide the bounds for regions of attraction of steady states.    The main methodology presented in the book is based on a combined usage of the recent norm estimates for matrix-valued functions and the following methods and results: the generalized Bohl-Perron principle and the integral version of the generalized Bohl-Perron principle; the freezing method; the positivity of fundamental solutions. A significant part of the book is devoted to  the Aizerman-Myshkis problem and  generalized Hill theory of periodic systems.    The book is intended not only for specialists in the theory of functional differential equations and control theory, but also for anyone with a sound mathematical background interested in their various applications.

Table of Contents

Front Cover.
Other Frontmatter.
Frontiers in Mathematics.
Title Page.
Copyright Page.
1: Preliminaries.
2: Some Results of the Matrix Theory.
3: General Linear Systems.
4: Time-Invariant Linear Systems with Delay.
5: Properties of Characteristic Values.
6: Equations Close to Autonomous and Ordinary Dierential Ones.
7: Periodic Systems.
8: Linear Equations with Oscillating Coefficients.
9: Linear Equations with Slowly Varying Coefficients.
10: Nonlinear Vector Equations.
11: Scalar Nonlinear Equations.
12: Forced Oscillations in Vector Semi-Linear Equations.
13: Steady States of Differential Delay Equations.
14: Multiplicative Representations of Solutions.
The General Form of Causal Operators.
Infinite Block Matrices.