1. Kinematics of a Particle

Introduction / Rectilinear Motion of a Particle: Single Degree of Freedom / Classification of the Kinematics or Dynamics Problem / Inverse Dynamics Problem / The Direct Dynamics Problem: Rectilinear Motion When the Acceleration is Given / Classification of Differential Equations / Separable First Order Scalar Differential Equations / Special Rectilinear Motions / Solution of a Liner First Order Differential Equation by Use of An Integrating Factor / Second Order Linear Differential Equations / Numerical Solution of Differential Equations / Curvilinear Motion of a Particle / Vector Differential Equation / Projectile Motion / Normal and Tangential Coordinates / Circular Motion / Normal and Tangential Coordinates in Three Dimensions / Radial and Transverse Coordinates (Polar Coordinates) / Three-Dimensional Coordinate Systems / Cylindrical Coordinates / Spherical Coordinates / relative Rectilinear Motion of Several particles / General Relative Motion between Particles / Navigation using Relative Velocity / Dependent Motions Between Two or More Particles / Kinematic Parametric Equations / Trajectories Expressed as Function of Parameters / Parametric Equations for Three-Dimensional Trajectories

2. Kinetics of Particles

Introduction / Equations of Motion for a Particle/ Solution Strategy for Particle Dynamics / Review of the Concepts of Static and Kinetic Friction / Determination of the Direction of the Normal and Friction Forces / Discontinuity and Singularity Functions / Normal and Tangential Coordinates / Two-Dimensional Parametric Equations of Dynamics / Polar Coordinates / Angular Momentum of a Particle / Central Force Motion / Three-Dimensional Particle Dynamics in Curvilinear Coordinates . Cylindrical Coordinates / Spherical Coordinates / Parametric Equations in Tangential, Normal and Binormal Coordinates

3. Work - Energy and Impulse - Momentum First Integrals of Motion

Introduction / Power, Work and Energy / Work of a Spring Force / Work of the Gravitational Attraction Force Between Two Masses / Power and Efficiency / Conservative Forces and Potential Energy / Conservative Energy / Principle of Impulse and momentum . Impulse and Momentum of Several Particles / Impact / Direct Central Impact / Oblique Central Impact / Impact with a Stationary Object

4. System of Particles

Introduction / General Equations for a System of Particles / Center of mass of a System of Particles / Kinetic Energy of a System of Particles / Work-Energy and Conservation of Energy of a System of Particles / Mass Flows / Steady Mass Flow / Variable Mass Flow

5. Kinematics of Rigid Bodies

Introduction / Translation of a Rigid Body / Rotation About a Fixed Axis / Planar Pure Rotation about an Axis Perpendicular to the Plane of Motion / Vector Relations for Rotation in a Plane / Constraints to the Motion / General Plane Motion / Absolute and Relative Velocities in Plane Motion of a Rigid Body / Experimental Motion Data / Angular Velocity for Noisy Experimental Data / Direct Vector Method to Obtain the Angular Velocity / Instantaneous Center of Rotation in Plane Motion / Instantaneous Center of Rotation between Two Rigid Bodies / Absolute and Relative Acceleration of a Rigid Body in Plane Motion / Alternate Solution of the Acceleration of Rigid Bodies / Kinematics of a System of Rigid Bodies / Analysis of Plane Motion in Terms of a Parameter / General Three-Dimensional Motion of a Rigid Body / Linear and Angular Acceleration / Constraints to the General Three-Dimensional Motion of a Rigid Body / Rigid Body with a Fixed Point in Space / Other Constraints / Instantaneous Helical Axis, or Screw Axis / Motion of a Rigid Body Having a Fixed Point in Space / Instantaneous Helical Axis of Rotation between Two Rigid Bodies / Motion with Respect to Rotating Reference Frame or Coordinate System

6. Dynamics of Rigid Bodies in Plane Motion

Introduction / Linear and Angular Momentum / Equations of Motion for Rigid Bodies in Plane Motion / Constraints on the Motion / Computational Methods for Plane Dynamic Systems / Systems of Rigid Bodies or Particles / D''''Alembert''''s Principle

7. Power, Work, Energy, Impulse, and Momentum of a Rigid Body

Power, Work, and Energy of a Rigid Body / Systems of Rigid Bodies and Particles / Conservation of Energy / Impulse and Momentum / Eccentric Impact on a Single Rigid Body / Eccentric Impact

8. Three-Dimensional Dynamics of Rigid Bodies

Introduction / Rotational Transformation between Coordinate Systems / Coordinate Transformations / Eulerian Angles / Angular Motion / Joint Coordinate System / Equations of Motion / Euler''''s Equations of Motion / Stability of Rotation about a Principle Axis / Motion of an Axisymmetric Object / Heavy Axisymmetric Top / Gyroscopic Motion with Steady Procession / Motion of an Axisymmetric Body Subjected to no External Forces / The Gyroscope

9. Vibration

Introduction / Undamped Single-Degree-of-Freedom Systems / Linear Vibration / Nonlinear Vibration / Damped Single-Degree-of-Freedom Systems / Undamped Motion / Overdamped Motion / Critically Damped Motion / Nonlinear Damping / Forced Response and Resonance

Appendix A Mass Moment of Inertia

Appendix B Vector Calculus and Ordinary Differential Equations

Dynamics Index Dictionary

Answers to Selected Problems

Index