F Business and Economic Applications

- Understand basic business terms and formulas, determine marginal revenues, costs and profits, find demand functions, and solve business and economics optimization problems.

Business and Economics Applications

Previously, you learned that one of the most common ways to measure change is with respect to time. In this section, you will study some important rates of change in economics that are not measured with respect to time. For example, economists refer to marginal profit, marginal revenue, and marginal cost as the rates of change of the profit, revenue, and cost with respect to the number of units produced or sold.

SUMMARY OF BUSINESS TERMS AND FORMULAS

<table>
<thead>
<tr>
<th>Basic Terms</th>
<th>Basic Formulas</th>
</tr>
</thead>
<tbody>
<tr>
<td>x is the number of units produced (or sold).</td>
<td>$R = xp$</td>
</tr>
<tr>
<td>p is the price per unit.</td>
<td>$C = \frac{C}{x}$</td>
</tr>
<tr>
<td>R is the total revenue from selling x units.</td>
<td>$P = R - C$</td>
</tr>
<tr>
<td>C is the total cost of producing x units.</td>
<td></td>
</tr>
<tr>
<td>\bar{C} is the average cost per unit.</td>
<td></td>
</tr>
<tr>
<td>P is the total profit from selling x units.</td>
<td></td>
</tr>
<tr>
<td>The break-even point is the number of units for which $R = C$.</td>
<td></td>
</tr>
</tbody>
</table>

Marginals

- $\frac{dR}{dx}$ = marginal revenue \approx extra revenue from selling one additional unit
- $\frac{dC}{dx}$ = marginal cost \approx extra cost of producing one additional unit
- $\frac{dP}{dx}$ = marginal profit \approx extra profit from selling one additional unit

In this summary, note that marginals can be used to approximate the extra revenue, cost, or profit associated with selling or producing one additional unit. This is illustrated graphically for marginal revenue in Figure F.1.
Finding the Marginal Profit

A manufacturer determines that the profit P (in dollars) derived from selling x units of an item is given by

$$P = 0.0002x^3 + 10x.$$

a. Find the marginal profit for a production level of 50 units.

b. Compare this with the actual gain in profit obtained by increasing production from 50 to 51 units.

Solution

a. Because the profit is $P = 0.0002x^3 + 10x$, the marginal profit is given by the derivative

$$\frac{dP}{dx} = 0.0006x^2 + 10.$$

When $x = 50$, the marginal profit is

$$\frac{dP}{dx} = (0.0006)(50)^2 + 10 \quad \text{Marginal profit for } x = 50$$

= $11.50.$

b. For $x = 50$ and 51, the actual profits are

$$P = (0.0002)(50)^3 + 10(50)$$

= 25 + 50

= 525.00.

$$P = (0.0002)(51)^3 + 10(51)$$

= 26.53 + 510

= $536.53.$

So, the additional profit obtained by increasing the production level from 50 to 51 units is

$$536.53 - 525.00 = 11.53.$$ \hspace{1cm} \text{Extra profit for one unit}

Note that the actual profit increase of $11.53 (when x increases from 50 to 51 units) can be approximated by the marginal profit of $11.50 per unit (when $x = 50$), as shown in Figure F.2.

The profit function in Example 1 is unusual in that the profit continues to increase as long as the number of units sold increases. In practice, it is more common to encounter situations in which sales can be increased only by lowering the price per item. Such reductions in price ultimately cause the profit to decline.

The number of units x that consumers are willing to purchase at a given price per unit p is given by the demand function

$$p = f(x).$$ \hspace{1cm} \text{Demand function}
Finding a Demand Function

A business sells 2000 items per month at a price of $10 each. It is estimated that monthly sales will increase by 250 items for each $0.25 reduction in price. Find the demand function corresponding to this estimate.

Solution From the estimate, \(x \) increases 250 units each time \(p \) drops $0.25 from the original cost of $10. This is described by the equation

\[
x = 2000 + 250\left(\frac{10 - p}{0.25}\right)
\]

or

\[
p = 12 - \frac{x}{1000} \quad x \geq 2000.
\]

The demand function is shown in Figure F.3.

Finding the Marginal Revenue

A fast-food restaurant has determined that the monthly demand for its hamburgers is

\[
p = \frac{60,000 - x}{20,000}.
\]

Find the increase in revenue per hamburger (marginal revenue) for monthly sales of 20,000 hamburgers. (See Figure F.4.)

Solution Because the total revenue is given by \(R = xp \), you have

\[
R = xp = x\left(\frac{60,000 - x}{20,000}\right) = \frac{1}{20,000}(60,000x - x^2).
\]

By differentiating, you can find the marginal revenue to be

\[
\frac{dR}{dx} = \frac{1}{20,000}(60,000 - 2x).
\]

When \(x = 20,000 \), the marginal revenue is

\[
\frac{dR}{dx} = \frac{1}{20,000}[60,000 - 2(20,000)]
\]

\[
= \frac{20,000}{20,000}
\]

\[
= \$1 \text{ per unit.}
\]

The demand function in Example 3 is typical in that a high demand corresponds to a low price, as shown in Figure F.4.
Finding the Marginal Profit

For the fast-food restaurant in Example 3, the cost (in dollars) of producing x hamburgers is

$$C = 5000 + 0.56x, \quad 0 \leq x \leq 50,000.$$

Find the total profit and the marginal profit for 20,000, 24,400, and 30,000 units.

Solution Because $P = R - C$, you can use the revenue function in Example 3 to obtain

$$P = \frac{1}{20,000} (60,000x - x^2) - 5000 - 0.56x$$

$$= 2.44x - \frac{x^2}{20,000} - 5000.$$

So, the marginal profit is

$$\frac{dP}{dx} = 2.44 - \frac{x}{10,000}.$$

The table shows the total profit and the marginal profit for each of the three indicated demands. Figure F.5 shows the graph of the profit function.

<table>
<thead>
<tr>
<th>Demand</th>
<th>Profit</th>
<th>Marginal profit</th>
</tr>
</thead>
<tbody>
<tr>
<td>20,000</td>
<td>$23,800</td>
<td>$0.44</td>
</tr>
<tr>
<td>24,400</td>
<td>$24,768</td>
<td>$0.00</td>
</tr>
<tr>
<td>30,000</td>
<td>$23,200</td>
<td>$-0.56</td>
</tr>
</tbody>
</table>

Finding the Maximum Profit

In marketing an item, a business has discovered that the demand for the item is represented by

$$p = \frac{50}{\sqrt{x}}. \quad \text{Demand function}$$

The cost C (in dollars) of producing x items is given by $C = 0.5x + 500$. Find the price per unit that yields a maximum profit.

Solution From the cost function, you obtain

$$P = R - C = xP - (0.5x + 500). \quad \text{Primary equation}$$

Substituting for p (from the demand function) produces

$$P = x\left(\frac{50}{\sqrt{x}}\right) - (0.5x + 500) = 50\sqrt{x} - 0.5x - 500.$$

Setting the marginal profit equal to 0

$$\frac{dP}{dx} = \frac{25}{\sqrt{x}} - 0.5 = 0$$

yields $x = 2500$. From this, you can conclude that the maximum profit occurs when the price is

$$P = \frac{50}{\sqrt{2500}} = \frac{50}{50} = \$1.00.$$

See Figure F.6.
Appendix F Business and Economic Applications F5

To find the maximum profit in Example 5, the profit function, \(P = R - C \), was differentiated and set equal to 0. From the equation

\[
\frac{dP}{dx} = \frac{dR}{dx} - \frac{dC}{dx} = 0
\]

it follows that the maximum profit occurs when the marginal revenue is equal to the marginal cost, as shown in Figure F.6.

EXAMPLE 6 Minimizing the Average Cost

A company estimates that the cost \(C \) (in dollars) of producing \(x \) units of a product is given by \(C = 800 + 0.04x + 0.0002x^2 \). Find the production level that minimizes the average cost per unit.

Solution Substituting from the equation for \(C \) produces

\[
\bar{C} = C \quad \frac{C}{x} = \frac{800 + 0.04x + 0.0002x^2}{x} = \frac{800}{x} + 0.04 + 0.0002x.
\]

Next, find \(\frac{d\bar{C}}{dx} \).

\[
\frac{d\bar{C}}{dx} = -\frac{800}{x^2} + 0.0002
\]

Then, set \(\frac{d\bar{C}}{dx} = 0 \) and solve for \(x \).

\[
-\frac{800}{x^2} + 0.0002 = 0 \quad \Rightarrow \quad 0.0002 = \frac{800}{x^2} \quad \Rightarrow \quad x^2 = 4,000,000 \quad \Rightarrow \quad x = 2000 \text{ units}
\]

Minimum average cost occurs when \(\frac{d\bar{C}}{dx} = 0 \).

See Figure F.7.

F Exercises

1. Think About It The figure shows the cost \(C \) of producing \(x \) units of a product.
 (a) What is \(C(0) \) called?
 (b) Sketch a graph of the marginal cost function.
 (c) Does the marginal cost function have an extremum? If so, describe what it means in economic terms.

2. Think About It The figure shows the cost \(C \) and revenue \(R \) for producing and selling \(x \) units of a product.
 (a) Sketch a graph of the marginal revenue function.
 (b) Sketch a graph of the profit function. Approximate the value of \(x \) for which profit is maximum.

Maximum Revenue In Exercises 3–6, find the number of units \(x \) that produces a maximum revenue \(R \).

3. \(R = 900x - 0.1x^2 \)
4. \(R = 600x^2 - 0.02x^3 \)
5. \(R = \frac{1,000,000x}{0.02x^2 + 1800} \)
6. \(R = 30x^{2/3} - 2x \)
In Exercises 15 and 16, use the cost function that produces the maximum profit.

Maximum Profit In Exercises 11–14, find the price per unit \(p \) (in dollars) that produces the maximum profit \(P \).

Average Cost In Exercises 7–10, find the number of units \(x \) that produces the minimum average cost per unit \(C \).

Minimum Cost In Exercises 15 and 16, use the cost function to find the value of \(x \) at which the average cost is a minimum. For that value of \(x \), show that the marginal cost and average cost are equal.

15. \(C = 2x^2 + 5x + 18 \)
16. \(C = x^3 - 6x^2 + 13x \)

17. Proof Prove that the average cost is a minimum at the value of \(x \) where the average cost equals the marginal cost.

18. Maximum Profit The profit \(P \) for a company is

\[
P = 230 + 20x - \frac{x^2}{2}
\]

where \(x \) is the amount (in hundreds of dollars) spent on advertising. What amount of advertising produces a maximum profit?

19. Numerical, Graphical, and Analytic Analysis The cost per unit for the production of an MP3 player is $60. The manufacturer charges $90 per unit for orders of 100 or less. To encourage large orders, the manufacturer reduces the charge by $0.15 per MP3 player for each unit ordered in excess of 100 (for example, there would be a charge of $87 per MP3 player for an order size of 120).

(a) Analytically complete six rows of a table such as the one below. (The first two rows are shown.)

<table>
<thead>
<tr>
<th>(x)</th>
<th>Price</th>
<th>Profit</th>
</tr>
</thead>
<tbody>
<tr>
<td>102</td>
<td>90 - 2(0.15)</td>
<td>102[90 - 2(0.15)] - 102(60) = 3029.40</td>
</tr>
<tr>
<td>104</td>
<td>90 - 4(0.15)</td>
<td>104[90 - 4(0.15)] - 104(60) = 3057.60</td>
</tr>
</tbody>
</table>

(b) Use a graphing utility to generate additional rows of the table. Use the table to estimate the maximum profit. (Hint: Use the table feature of the graphing utility.)

(c) Write the profit \(P \) as a function of \(x \).

(d) Use calculus to find the critical number of the function in part (c) and find the required order size.

(e) Use a graphing utility to graph the function in part (c) and verify the maximum profit from the graph.

20. Maximum Profit A real estate office handles 50 apartment units. When the rent is $720 per month, all units are occupied. However, on the average, for each $40 increase in rent, one unit becomes vacant. Each occupied unit requires an average of $84 per month for service and repairs. What rent should be charged to obtain a maximum profit?

21. Minimum Cost A power station is on one side of a river that is \(\frac{1}{2} \) mile wide, and a factory is 6 miles downstream on the other side. It costs $18 per foot to run power lines over land and $25 per foot to run them underwater. Find the most economical path for the transmission line from the power station to the factory.

22. Maximum Revenue When a wholesaler sold a product at $25 per unit, sales were 800 units per week. After a price increase of $5, the average number of units sold dropped to 775 per week. Assume that the demand function is linear, and find the price that will maximize the total revenue.

23. Minimum Cost The ordering and transportation cost \(C \) (in thousands of dollars) of the components used in manufacturing a product is

\[
C = 100 \left(\frac{200}{x^2} + \frac{x}{x + 50} \right) \quad x \geq 1
\]

where \(x \) is the order size (in hundreds). Find the order size that minimizes the cost. (Hint: Use Newton's Method or the zero feature of a graphing utility.)

24. Average Cost A company estimates that the cost \(C \) (in dollars) of producing \(x \) units of a product is

\[
C = 800 + 0.4x + 0.02x^2 + 0.0001x^3
\]

Find the production level that minimizes the average cost per unit. (Hint: Use Newton’s Method or the zero feature of a graphing utility.)

25. Revenue The revenue \(R \) for a company selling \(x \) units is

\[
R = 900x - 0.1x^2
\]

Use differentials to approximate the change in revenue when sales increase from \(x = 3000 \) to \(x = 3100 \) units.

26. Analytic and Graphical Analysis A manufacturer of fertilizer finds that the national sales of fertilizer roughly follow the seasonal pattern

\[
F = 100,000 \left[1 + \sin \left(\frac{2\pi(t - 60)}{365} \right) \right]
\]

where \(F \) is measured in pounds. Time \(t \) is measured in days, with \(t = 1 \) corresponding to January 1. (a) Use calculus to determine the day of the year when the maximum amount of fertilizer is sold.

(b) Use a graphing utility to graph the function and approximate the day of the year when sales are minimum.
27. **Modeling Data** The table shows the monthly sales G (in thousands of gallons) of gasoline at a gas station in 2012. The time in months is represented by t, with $t = 1$ corresponding to January.

<table>
<thead>
<tr>
<th>t</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>8.91</td>
<td>9.18</td>
<td>9.79</td>
<td>9.83</td>
<td>10.37</td>
<td>10.16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>t</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>10.37</td>
<td>10.81</td>
<td>10.03</td>
<td>9.97</td>
<td>9.85</td>
<td>9.51</td>
</tr>
</tbody>
</table>

A model for these data is

$$G = 9.90 - 0.64 \cos \left(\frac{\pi t}{6} - 0.62 \right).$$

(a) Use a graphing utility to plot the data and graph the model.

(b) Use the model to approximate the month when gasoline sales were greatest.

(c) What factor in the model causes the seasonal variation in sales of gasoline? What part of the model gives the average monthly sales of gasoline?

(d) The gas station adds the term $0.02t$ to the model. What does the inclusion of this term mean? Use this model to estimate the maximum monthly sales in 2016.

28. **Airline Revenues** The annual revenue R (in millions of dollars) for an airline for the years 2005–2014 can be modeled by

$$R = 4.7t^4 - 193.5t^3 + 2941.7t^2 - 19,294.7t + 52,012$$

where $t = 5$ corresponds to 2005.

(a) During which year (between 2005 and 2014) was the airline’s revenue the least?

(b) During which year was the revenue the greatest?

(c) Find the revenues for the years in which the revenue was the least and greatest.

(d) Use a graphing utility to confirm the results in parts (a) and (b).

29. **Modeling Data** The manager of a department store recorded the quarterly sales S (in thousands of dollars) of a new seasonal product over a period of 2 years, as shown in the table, where t is the time in quarters, with $t = 1$ corresponding to the winter quarter of 2011.

<table>
<thead>
<tr>
<th>t</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>7.5</td>
<td>6.2</td>
<td>5.3</td>
<td>7.0</td>
<td>9.1</td>
<td>7.8</td>
<td>6.9</td>
<td>8.6</td>
</tr>
</tbody>
</table>

30. **Think About It** Match each graph with the function it best represents—a demand function, a revenue function, a cost function, or a profit function. Explain your reasoning. [The graphs are labeled (a), (b), (c), and (d).]

31. $p = 400 - 3x$
32. $p = 5 - 0.03x$
33. $p = 400 - 0.5x^2$
34. $p = \frac{500}{x + 2}$

31. $x = 20$
32. $x = 100$
33. $x = 20$
34. $x = 23$

Elasticity The relative responsiveness of consumers to a change in the price of an item is called the price elasticity of demand. If $p = f(x)$ is a differentiable demand function, then the price elasticity of demand is

$$\eta = \frac{p'x}{dp/dx}.$$

For a given price, if $|\eta| < 1$, then the demand is inelastic. If $|\eta| > 1$, then the demand is elastic. In Exercises 31–34, find η for the demand function at the indicated x-value. Is the demand elastic, inelastic, or neither at the indicated x-value?