Pharmacology

- 2/3 doctor visits include prescriptions
- $180 billion/year
Pharmacology

- **Pharmacotherapy** – use of drugs for the treatment of disease and health maintenance
- **Medicine** – chemical used for diagnosis, prevention, treatment of symptoms, or cure
- Prescription and over the counter
Pharmacology

- **Pharmacology** – study of drugs, properties and their effects
- **Pharmacokinetics** – study of drug absorption, distribution, metabolism and excretion
Pharmacology

• An understanding will improve patient outcomes, maximize nutritional status, decrease complications and risks
• JCAHO requires monitoring, documentation, and patient education of food-drug interactions
Pharmacotherapy

- Nutrition affects drug action
- Drug action affects nutrition
- “Drug-nutrient” interactions
- ADA position statement (2003)
- Preventing interactions is one part of nutrition assessment/pharmacotherapy
Drug Mechanisms

- Binding to specific receptors on cell
- Initiating enzyme reactions
- Can interact with more than one cell receptor
- Stimulating (induction) or inhibiting enzyme systems
 ✓ ACE inhibitors
A. Angiotensin-converting enzyme (ACE)
 Angiotensin I → Angiotensin II → Vasoconstriction—blood pressure increases

B. Angiotensin-converting enzyme (ACE)
 ACE inhibitor
 Angiotensin I → Inhibited conversion to angiotensin II → Vasodilation—blood pressure decreases
Drug Administration

- Sublingual or buccal – mouth or cheek
 - e.g. nitroglycerin
- Parenteral
 - SC, ID, IM, IP, IV
- Topical – skin or mucous membrane
- Inhalation
- Directly to target tissue
 - Eye, ear, spinal canal
Pharmacokinetics

• Absorption
 ✓ Same basic processes as nutrients
 • Passive diffusion, facilitated diffusion, active transport
 ✓ Solubility and ionization
 ✓ Excipients affect dissolution (dissolving)
 • Binders, lubricants, coating, coloring, flavor, tablet formulation
 ✓ Time, pH, and surface area
 ✓ Chemical properties
 ✓ Integrity of GI, circulation of blood
Pharmacokinetics

• Distribution
 ✓ Movement throughout body to target tissue
 ✓ Affected by circulation and binding
 ✓ Physiological features
Pharmacokinetics

- Metabolism
 - Biotransformation rendering inactive for excretion via urine or bile
 - Liver major site
 - Through catalyst of enzyme systems
 - CP450
 - Inhibitor – competition for receptor site; increased drug effect
 - Inducer - stimulates synthesis of enzyme; decreased drug effect
Pharmacokinetics

- Excretion
 - Urinary or biliary, lungs, bowel, breast milk
 - Urinary excretion in all stages within kidney
 - Filtered
 - Bound to large molecules
 - Reabsorption
Pharmacokinetics

• Alterations
 ✓ Altered GI
 ✓ Altered distribution
 ✓ Altered metabolism
 ✓ Altered urinary excretion
Pharmacokinetics

- Altered GI
 - Simultaneous consumption with food
 - Iron
 - Vomiting & diarrhea
 - Interruptions in transit time or surface area
 - Crohn’s disease
 - Malabsorptive conditions
 - Circulation deficits
 - Competition for carriers

© 2007 Thomson - Wadsworth
Pharmacokinetics

• Altered Distribution
 ✓ Circulation
 • Age and disease
 • Vasodilation
 ✓ Body size & composition
 • Body fat may slow distribution
 ✓ Any situation altering albumin
 • Liver, kidney, malnutrition
Pharmacokinetics

• Altered Metabolism
 ✓ Age
 ✓ May appear as decreased effectiveness or toxicity
 ✓ Adequate function of organs
 ✓ Genetic factors
 ✓ Gender
 ✓ Concurrent use of other medications
Pharmacokinetics

• Altered Urinary Excretion
 ✓ pH of urine
 ✓ Presence of competitor for active transport
 ✓ Urinary flow rates & kidney function
 ✓ Creatinine clearance
Nutrition on Drug Action

- Nutrition on drug dissolution
 - pH of stomach
 - Achlorhydria
 - HIV/AIDS
 - Meds: H2 blockers, proton pump inhibitors, antacids
 - Gastric emptying rate
 - Prokinetics
 - Food in stomach/high-fat meal
 - Vomiting, diarrhea
 - Gastric surgical resection
Nutrition on Drug Action

• Nutrition on drug absorption
 ✓ Food may affect availability of drug
 • e.g. Fosomax, Saquinavir - food reduces absorption
 • Erythromycin – food increases absorption
 ✓ Chelation
 • e.g. calcium with antibiotic tetracycline
Nutrition on Drug Action

• Nutrition on drug metabolism
 ✓ Inducer or inhibitor for metabolic enzyme systems
 ✓ Compete for carrier systems
 • e.g. St. John’s wort decreases effectiveness
 • Herbal supplements and anesthesia prolong effect
 • Vitamin K and warfarin
 • Tyramine and MAOs – Box 13.2
 ✓ See Table 13.1
Nutrition on Drug Action

- Nutrition on drug excretion
 ✓ Control of urine pH
 - Kidney stones
Complications

• On Nutrient Absorption
 ✓ Meds that speed transit time or gastric emptying
 ✓ Side effects such as nausea, vomiting, diarrhea, constipation
 ✓ e.g. corticosteroids & decreased absorption of calcium
Complications

• On Nutrient Metabolism
 ✓ Interfere with macronutrient, vitamin and mineral metabolism
 ✓ e.g. Dilantin inhibits folate and vit. D metabolism leading to megaloblastic anemia
 ✓ See Table 13.4
Complications

• On Nutrient Excretion
 ✓ Increased urinary output
 ✓ e.g. Lasix and hypokalemia
 ✓ Those affecting renal function reduce reabsorption
 ✓ See Table 13.5
At-Risk Populations

• Elderly
 ✓ Multiple meds – polypharmacy
 ✓ Both OTC and prescribed
 ✓ Physiological changes
 ✓ Compliance
 ✓ Inappropriate dosing
 ✓ Beer’s criteria – see Table 13.6
At-Risk Populations

- HIV/AIDS
 - Multiple medications
 - Specific guidelines regarding consumption with or without food
 - Significant nutritional side effects
At-Risk Populations

- Nutrition support
 - Tube feedings decrease absorption of some meds
 - Macronutrients may cause chelation of meds
 - Guidelines – ASPEN
 - See pp. 310-311
Nutrition Therapy

- Evaluate past and current medical hx for cardiac, liver, kidney
- Baseline lab measures for kidney, liver function, and glucose
- Treatment regimes with potential drug-nutrient interactions
- OTC, drugs, supplements, and CAM
Nutrition Therapy

- Potential barriers to compliance
- Drug-drug interactions among meds
- Drug-nutrient interactions
- See Box 13.4 and Figure 13.5 for clinical application
Past and current medical history: 65 YOM

Treatment regimens that may potentiate drug-nutrient interactions: none

Diagnoses affecting:

- Kidney function: type 2 DM hypertension
- Liver function: probable alcohol abuse
- Cardiac function: hypertension previous MI cardiac surgery

Biomedical assessment

Nutritional implications of medications used

- Drug-drug int: Toprol-Amaryl Altace-Amaryl Plavix-Aspirin
- Drug-nutrient int: Altace-serum K Toprol-food Altace/Amaryl-alcohol

Kidney function
- BUN: 21 Creatinine: 1.2

Liver function
- No lab values available at this time

Glucose: 180 mg/dL