Acid-Base Balance

• pH
 ✓ Normal cellular function
 ✓ Enzyme activity
 ✓ Membrane stability
• Many nutrition therapies address this metabolic change
Acid-Base Balance

- Acids
 - Donate or give up H+ ions
 - Volatile acids
 - Can be converted to gaseous form and eliminated by the lungs
 - Carbonic acid - H$_2$CO$_3$
 - CO$_2$ - indirect measure - partial pressure
Acid-Base Balance

• Acids
 ✓ Donate or give up H+ ions
 • Nonvolatile acids or fixed acids
 – Inorganic acids that occur through metabolism of CHO, protein, lipid
 – Average amount 50-100 mmol/day
 – Proteins contribute the most
 – Lungs cannot eliminate
Acid-Base Balance

- Bases
 - Can accept or receive H+ ions
 - Bicarbonate HCO₃
 - Kidneys provide primary regulation
Acid-Base Balance

- **Buffers**
 - React with acid or base to decrease effect
- **pH**
 - Measures relative acidity or alkalinity of a fluid... ratio of acids to bases
 - 1 (acidic) - 14 (basic)
 - Water is neutral - 7.0
 - Normal serum pH 7.35-7.45
Acid-Base Balance

- pH
 - Acidosis
 - Accumulation of acid or loss of base
 - Acidemia
 - pH < 7.35
 - Alkalosis
 - Accumulation of base or loss of acid
 - Alkalemia
 - pH > 7.45
Regulation of Acid-Base Balance

- Chemical buffers
- Respiratory regulation
- Kidney regulation
Regulation of Acid-Base Balance

- Chemical buffers
 ✓ Table 9.1
 ✓ Bicarbonate-carbonic acid buffer system
 • Increases rate and depth of breathing
 • Increased expiration of CO₂
 • Reabsorption or regeneration of HCO₃ in the kidneys
Regulation of Acid-Base Balance

• Other Chemical buffers
 ✓ Disodium/monosodium phosphate buffer system
 ✓ Proteins intracellularly
 ✓ Hemoglobin within the RBC
Regulation of Acid-Base Balance

- Respiratory regulatory control
 - Change in respiration rate
 - Depth of breathing
 - Release or retention of CO₂
Regulation of Acid-Base Balance

- Renal regulatory control
 - Control of \(\text{HCO}_3^- \) by the kidneys
 - Increased or decreased based on need
 - Formation of dibasic phosphate and sulfur in the urine
 - Accepts H+
ca = Carbonic anhydrase

© 2007 Thomson Higher Education

© 2007 Thomson - Wadsworth
Regulation of Acid-Base Balance

- Electrolyte Balance
 - Hydrogen and bicarbonate both electrolytes
 - Other electrolytes affected to maintain electroneutrality
 - Potassium, chloride, sodium
Assessment of Acid-Base Balance

• Body attempts to self-correct changes in pH – making assessment difficult
• Common lab measures
 ✓ ABGs
 ✓ Serum chemistries
 ✓ See Table 9.3
• pH alone not adequate – why?
Acid-Base Disorders

- 4 major types
 - Respiratory acidosis
 - Respiratory alkalosis
 - Metabolic acidosis
 - Metabolic alkalosis
Acid-Base Disorders

• Respiratory acidosis
 ✓ Excess acid in blood secondary to carbon dioxide retention
 ✓ Hypercapnia
 ✓ Common causes - see Table 9.5
 ✓ d/t respiratory dysfunction – renal regulatory systems compensate
Acid-Base Disorders

- Respiratory acidosis
 ✓ Labs
 • Decreased pH, elevated pCO\(_3\)
 • Slightly elevated bicarbonate
 • Increase in serum Ca, K, Cl
 ✓ Hypoxemia
 ✓ Restlessness, apprehension, lethargy, muscle twitching, tremors, convulsions, coma
Acid-Base Disorders

• Respiratory acidosis
 ✔ Treatment
 • Correct underlying condition
 • Increase oxygenation
 • Mechanical ventilation
Acid-Base Disorders

- Respiratory alkalosis
 - Relative excess amount of base d/t reduction of CO₂
 - Hyperventilation
 - Common causes - see Table 9.6
 - Shift of acid from ICF to ECF
 - Bicarbonate moved into cells in exchange for chloride – renal compensation
Acid-Base Disorders

- Respiratory alkalosis
 - pH > 7.45
 - Plasma HCO₃ low in chronic, PaCO₃ low in acute
 - Cardiac, CNS, respiratory symptoms
 - Treat underlying cause
 - Correction of hypoxia
Acid-Base Disorders

- Metabolic Acidosis
 - All types not caused by excessive CO$_2$
 - Common causes - see Table 9.7
 - Diarrhea most common cause
 - d/t excessive loss of bicarbonate – bicarbonate-carbonic acid buffer system is stimulated
ca = Carbonic anhydrase

© 2007 Thomson Higher Education

© 2007 Thomson - Wadsworth
Acidemia

H⁺ Excess
Extracellular Fluid

Alkalemia

H⁺ Deficit
Extracellular Fluid

=⇒ H⁺
⇐ k⁺
Acid-Base Disorders

- Metabolic Acidosis
 - Kussmaul breathing
 - Cardiac and neurological
 - Treat underlying cause
 - Raise pH to safe level – not too quickly
Acid-Base Disorders

- Metabolic Alkalosis
 - Excess amount of base
 - Fluid imbalance – with volume decrease
 - Without fluid imbalance – without volume decrease
 - Common causes - see Table 9.9
 - Underlying event determines pathophysiology
Acid-Base Disorders

• Metabolic Alkalosis
 ✓ No specific signs and symptoms
 ✓ pH >7.45, elevated HCO₃
 ✓ Look at electrolytes and volume
 ✓ Volume imbalance corrected with isotonic saline with KCl
 ✓ Treat underlying condition
 ✓ Carbonic anhydrase in severe cases
Acid-Base Disorders

- Mixed Disorders
 - See Table 9.10
 - Likely when PaCO_2 and HCO_3 not consistent with pH
 - Or compensatory response exaggerated