Chapter 1 - Introduction to Electronics and Design

1.1 Introduction
1.2 History of Electronics
1.3 Electronic Systems
1.3.1 Sensors
1.3.2 Actuators
1.4 Electronic Signals and Notation
1.4.1 Analog-to-Digital Converters
1.4.2 Digital-to-Analog Converters
1.4.3 Notation
1.5 Classifications of Electronic Systems
1.6 Specifications of Electronic Systems
1.6.1 Transient Specifications
1.6.2 Distortion
1.6.3 Frequency Specifications
1.6.4 DC and Small-Signal Specifications
1.7 Types of Amplifiers
1.8 Design of Electronic Systems
1.9 Design of Electronic Circuits
1.9.1 Analysis versus Design
1.9.2 Definition of Engineering Design
1.9.3 The Circuit-Level Design Process
1.9.4 Benefits of Studying from a Design Perspective
1.9.5 Types of Design Projects
1.9.6 Design Report
1.10 Electronic Devices
1.10.1 Semiconductor Diodes
1.10.2 Bipolar Junction Transistors
1.10.3 Field-Effect Transistors
1.11 Emerging Electronics
1.11.1 Memristor
1.11.2 Organic Electronics
1.11.3 Bioelectronics

Chapter 2 – Introduction to Amplifiers and Frequency Response

2.1 Introduction
2.2 Amplifier Characteristics
 2.2.1 Voltage Gain
 2.2.2 Current Gain
 2.2.3 Power Gain
 2.2.4 Logarithmic Gain
 2.2.5 Input and Output Resistances
 2.2.6 Amplifier Saturation
 2.2.7 Amplifier Nonlinearity
 2.2.8 Rise Time
Chapter 3 – Introduction to Operational Amplifiers and Applications

3.1 Introduction 104
3.2 Characteristics of Ideal Op-Amps 104
 3.2.1 Op-Amp Circuit Model 105
 3.2.2 Op-Amp Frequency Response 107
 3.2.3 Common-Mode Rejection Ratio 108
3.3 Op-Amp PSpice/SPICE Models 111
 3.3.1 DC Linear Model 111
 3.3.2 AC Linear Model 112
 3.3.3 Nonlinear Macromodel 113
3.4 Analysis of Ideal Op-Amp Circuits 114
 3.4.1 Noninverting Amplifiers 114
 CMRR of a Noninverting Amplifier 116
 3.4.2 Inverting Amplifiers 121
 CMRR of an Inverting Amplifier 122
3.5 Op-Amp Applications 128
 3.5.1 Integrators 128
 Frequency Response of Op-Amp Integrators 134
 3.5.2 Differentiators 137
 Frequency Response of Op-Amp Differentiators 141
 3.5.3 Differential Amplifiers 143
 CMRR of a Differential Amplifier 144
 3.5.4 Instrumentation Amplifiers 145
 CMRR of an Instrumentation Amplifier 146
 3.5.5 Noninverting Summing Amplifiers 147
Chapter 3 – Analog Computing Circuits

3.5.6 Inverting Summing Amplifiers 148
3.5.7 Addition–Subtraction Amplifiers 149
3.5.8 Optocoupler Drivers 153
3.5.9 Photodetectors 154
3.5.10 Voltage–Current Converters 155
3.5.11 DC Voltmeters 156
3.5.12 DC Millivoltmeters 157
3.5.13 Negative Impedance Converters 158
3.5.14 Constant Current Sources 159
3.5.15 Noninverting Integrators 159
3.5.16 Inductance Simulators 161
3.5.17 AC-Coupled Bootstrapped Voltage Followers 162

3.6 Op-Amp Circuit Design 164

Chapter 4 – Semiconductor Diodes

4.1 Introduction 180
4.2 Ideal Diodes 180
4.3 Transfer Characteristics of Diode Circuits 183
4.4 Practical Diodes 185
4.4.1 Characteristic of Practical Diodes 185
 - Forward-Biased Region 186
 - Reverse-Biased Region 186
 - Breakdown Region 187
4.4.2 Determination of Diode Constants 187
4.4.3 Temperature Effects 189
4.5 Analysis of Practical Diode Circuits 192
4.5.1 Graphical Method 192
4.5.2 Approximate Method 193
4.5.3 Iterative Method 193
4.5.4 Mathematical Method 194
4.6 Modeling of Practical Diodes 196
4.6.1 Constant-Drop DC Model 196
4.6.2 Piecewise Linear DC Model 197
4.6.3 Low-Frequency Small-Signal Model 199
 - Determining r_d by Differentiating 201
 - Determining r_d by Taylor Series Expansion 201
4.6.4 PSpice/SPICE Diode Model 205
 - Model Statement 205
 - Tabular Representation 206
4.7 Zener Diodes 208
4.7.1 Zener Regulator 209
4.7.2 Design of a Zener Regulator 211
4.7.3 Zener Limiters 214
4.7.4 Temperature Effects on Zener Diodes 218
4.8 Light-Emitting Diodes 220
4.9 Power Rating 220
4.10 Diode Data Sheets 222

Chapter 5 – Applications of Diodes

5.1 Introduction 238
5.2 Diode Rectifier 238
5.2.1 Single-Phase Half-Wave Rectifiers 238
5.2.2 Single-Phase Full-Wave Center-Tapped Rectifier 247
5.2.3 Single-Phase Full-Wave Bridge Rectifier 254
5.3 Output Filters for Rectifiers 260
 5.3.1 L Filters 261
 5.3.2 C Filters 264
 5.3.3 LC Filters 269
5.4 Diode Peak Detectors and Demodulators 272
5.5 Diode Clippers 276
 5.5.1 Parallel Clippers 277
 5.5.2 Series Clippers 278
5.6 Diode Clamping Circuits 280
 5.6.1 Fixed-Shift Clampers 280
 5.6.2 Variable-Shift Clampers 281
5.7 Diode Voltage Multipliers 285
 5.7.1 Voltage Doublers 285
 5.7.2 Voltage Triplers and Quadruplers 287
5.8 Diode Function Generators 290

Chapter 6 – Semiconductors and pn Junction Characteristics

6.1 Introduction 300
6.2 Semiconductor Materials 300
 6.2.1 n-type Materials 301
 6.2.2 p-type Materials 302
 6.2.3 Majority and Minority Carriers 303
 6.2.4 The Fermi Function 304
 6.2.5 Carrier Concentrations 305
6.3 Zero-Biased pn Junction 307
 6.3.1 Built-In Junction Potential 308
 6.3.2 Electric Field Distribution 310
 6.3.3 Junction Potential Distribution 311
 6.3.4 Space Charge Depletion Width 312
6.4 Reverse-Biased pn Junction 314
 6.4.1 Breakdown Condition 315
 6.4.2 Depletion Region Width 316
 6.4.3 Junction Capacitance 317
6.5 Forward-Biased pn Junction 319
 6.5.1 Depletion Region Width 320
 6.5.2 Minority Carrier Charge Distribution 321
6.6 Junction Current Density 323
6.7 Temperature Dependence 325
6.8 High-Frequency AC Model 326
 6.8.1 Depletion Capacitance 326
 6.8.2 Diffusion Capacitance 327
 6.8.3 Forward-Biased Model 328
 6.8.4 Reverse-Biased Model 329

Chapter 7 – Metal Oxide Semiconductor Field-Effect Transistors

7.1 Introduction 336
7.2 Metal Oxide Field-Effect Transistors 336
7.3 Enhancement MOSFETs 337
 7.3.1 Operation 338
 Cutoff Region 338
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear Ohmic Region</td>
<td>339</td>
</tr>
<tr>
<td>Nonlinear Ohmic Region</td>
<td>340</td>
</tr>
<tr>
<td>Saturation Region</td>
<td>341</td>
</tr>
<tr>
<td>7.3.2 Output and Transfer Characteristics</td>
<td>342</td>
</tr>
<tr>
<td>7.3.3 Channel Length Modulation</td>
<td>343</td>
</tr>
<tr>
<td>7.3.4 Substrate Biasing Effects</td>
<td>345</td>
</tr>
<tr>
<td>7.3.5 Complementary MOS (CMOS)</td>
<td>346</td>
</tr>
<tr>
<td>7.4 Depletion MOSFETs</td>
<td>346</td>
</tr>
<tr>
<td>7.4.1 Operation</td>
<td>347</td>
</tr>
<tr>
<td>7.4.2 Output and Transfer Characteristics</td>
<td>349</td>
</tr>
<tr>
<td>Ohmic Region</td>
<td>349</td>
</tr>
<tr>
<td>Saturation Region</td>
<td>349</td>
</tr>
<tr>
<td>Cutoff Region</td>
<td>349</td>
</tr>
<tr>
<td>7.5 MOSFET Models and Amplifier</td>
<td>349</td>
</tr>
<tr>
<td>7.5.1 DC Models</td>
<td>351</td>
</tr>
<tr>
<td>7.5.2 Small-Signal AC Models</td>
<td>351</td>
</tr>
<tr>
<td>Small-Signal Output Resistance ro</td>
<td>352</td>
</tr>
<tr>
<td>Transconductance gm</td>
<td>352</td>
</tr>
<tr>
<td>7.5.3 PSpice Models</td>
<td>353</td>
</tr>
<tr>
<td>7.5.4 Small-Signal Analysis</td>
<td>354</td>
</tr>
<tr>
<td>7.6 A MOSFET Switch</td>
<td>356</td>
</tr>
<tr>
<td>7.7 DC Biasing of MOSFETs</td>
<td>357</td>
</tr>
<tr>
<td>7.7.1 MOSFET Biasing Circuit</td>
<td>359</td>
</tr>
<tr>
<td>7.7.2 Design of MOSFET Biasing Circuit</td>
<td>359</td>
</tr>
<tr>
<td>7.8 Common-Source (CS) Amplifiers</td>
<td>365</td>
</tr>
<tr>
<td>7.8.1 CS Amplifier with Current Source Load</td>
<td>365</td>
</tr>
<tr>
<td>7.8.2 CS Amplifier with Enhancement MOSFET Load</td>
<td>368</td>
</tr>
<tr>
<td>7.8.3 CS Amplifier with Depletion MOSFET Load</td>
<td>370</td>
</tr>
<tr>
<td>7.8.4 CS Amplifier with Resistive Load</td>
<td>371</td>
</tr>
<tr>
<td>Input Resistance Ri ()</td>
<td>372</td>
</tr>
<tr>
<td>Output Resistance Ro</td>
<td>372</td>
</tr>
<tr>
<td>Open-Circuit (or No-Load) Voltage Gain Avo</td>
<td>374</td>
</tr>
<tr>
<td>7.9 Common-Drain Amplifiers</td>
<td>375</td>
</tr>
<tr>
<td>7.9.1 Active-Biased Source Follower</td>
<td>376</td>
</tr>
<tr>
<td>Input Resistance Ri</td>
<td>376</td>
</tr>
<tr>
<td>Voltage Gain Avo</td>
<td>376</td>
</tr>
<tr>
<td>Output Resistance Ro</td>
<td>376</td>
</tr>
<tr>
<td>7.9.2 Resistive-Biased Source Follower</td>
<td>378</td>
</tr>
<tr>
<td>Input Resistance Ri</td>
<td>378</td>
</tr>
<tr>
<td>Output Resistance Ro</td>
<td>379</td>
</tr>
<tr>
<td>7.10 Common-Gate Amplifiers</td>
<td>380</td>
</tr>
<tr>
<td>Input Resistance Ri</td>
<td>380</td>
</tr>
<tr>
<td>No-Load Voltage Gain Avo</td>
<td>382</td>
</tr>
<tr>
<td>Output Resistance Ro</td>
<td>382</td>
</tr>
<tr>
<td>7.11 Multistage Amplifiers</td>
<td>383</td>
</tr>
<tr>
<td>7.11.1 Capacitor-Coupled Cascaded Amplifiers</td>
<td>383</td>
</tr>
<tr>
<td>7.11.2 Direct-Coupled Amplifiers</td>
<td>383</td>
</tr>
<tr>
<td>7.11.3 Cascoded Amplifiers</td>
<td>384</td>
</tr>
<tr>
<td>DC Biasing</td>
<td>384</td>
</tr>
<tr>
<td>Small-Signal Voltage Gain</td>
<td>386</td>
</tr>
<tr>
<td>Small-Signal Output Resistance</td>
<td>386</td>
</tr>
<tr>
<td>7.12 DC Level Shifting and Amplifier</td>
<td>386</td>
</tr>
<tr>
<td>7.12.1 Level-Shifting Methods</td>
<td>387</td>
</tr>
<tr>
<td>Potential Divider Level Shifting</td>
<td>387</td>
</tr>
<tr>
<td>Current Source Level Shifting</td>
<td>387</td>
</tr>
<tr>
<td>Zener Level Shifting</td>
<td>388</td>
</tr>
<tr>
<td>7.12.2 Level-Shifted MOS Amplifier</td>
<td>388</td>
</tr>
<tr>
<td>Current Mirror Source</td>
<td>388</td>
</tr>
<tr>
<td>Small-Signal Voltage Gain</td>
<td>390</td>
</tr>
<tr>
<td>7.13 Frequency Response of MOSFET Amplifiers</td>
<td>393</td>
</tr>
</tbody>
</table>
Chapter 8 – Bipolar Junction Transistors and Amplifiers

8.1 Introduction 434
8.2 Bipolar Junction Transistors 434
8.3 Principles of BJT Operation 436
 8.3.1 Forward Mode of Operation 436
 Collector Current 439
 Emitter Current 439
 Base Current 440
 Forward-Current Ratio 440
 Forward-Current Gain 440
 8.3.2 Cutoff, Saturation, and Inverse-Active Modes of Operation 440
 8.3.3 Base Narrowing 441
 8.3.4 Physical Parameters of Saturation Current IS and Current Gain 444
 Collector Saturation Current ISC 445
 Base Saturation Current ISB 445
 Current Gain bF 446
8.4 Input and Output Characteristics 447
8.5 BJT Circuit Models 449
 8.5.1 Linear DC Model 450
 8.5.2 Small-Signal AC Model 450
 8.5.3 Small-Signal Hybrid Model 452
 8.5.4 PSpice/SPICE Model 452
 8.5.5 Small-Signal Analysis 453
8.6 The BJT Switch 455
8.7 dc Biasing of Bipolar Junction Transistors 457
 8.7.1 Active Current–Source Biasing 458
 8.7.2 Single–Base Resistor Biasing 459
 8.7.3 Emitter Resistance–Feedback Biasing 460
 8.7.4 Emitter-Follower Biasing 461
 8.7.5 Two–Base Resistor Biasing 461
 8.7.6 Biasing Circuit Design 463
8.8 Common-Emitter Amplifiers 467
 8.8.1 Active-Biased Common-Emitter Amplifier 468
 8.8.2 Resistive-Biased Common-Emitter Amplifier 471
 Input Resistance Ri 472
 Output Resistance Ro 473
 Open-Circuit (or No-Load) Voltage Gain Avo 473
8.9 Emitter Followers 476
 8.9.1 Active-Biased Emitter Follower 476
 Input Resistance Ri 476
 Open-Circuit (or No-Load) Voltage Gain Avo 477
 Output Resistance Ro 478
 8.9.2 Resistive-Biased Emitter Follower 479
8.10 Common-Base Amplifiers 483
 8.10.1 Input Resistance Ri 484
Table of Contents

8.10.2 No-Load Voltage Gain A_{vo}
8.10.3 Output Resistance R_o

8.11 Multistage Amplifiers
8.11.1 Capacitor-Coupled Cascaded Amplifiers
8.11.2 Direct-Coupled Amplifiers
8.11.3 Cascoded Amplifiers
 - DC Biasing
 - Small-Signal Voltage Gain
 - Small-Signal Output Resistance

8.12 The Darlington Pair Transistor

8.13 DC Level Shifting and Amplifier
8.13.1 Level-Shifting Methods
 - Potential Divider Level Shifting
 - Current Source Level Shifting
 - Zener Level Shifting
8.13.2 Level-Shifted dc Amplifier
 - Current Mirror Source
 - DC Output Voltage
 - Small-Signal Voltage Gain

8.14 Frequency Model and Response of Bipolar Junction Transistors
8.14.1 High-Frequency Model
8.14.2 Small-Signal PSpice/SPICE Model
8.14.3 Frequency Response of BJTs

8.15 Frequency Response of BJT Amplifiers
8.15.1 Common-Emitter BJT Amplifiers
 - Low Cutoff Frequencies
 - High Cutoff Frequencies
8.15.2 Common-Collector BJT Amplifiers
 - Low Cutoff Frequencies
 - High Cutoff Frequencies
8.15.3 Common-Base BJT Amplifiers
 - Low Cutoff Frequencies
 - High Cutoff Frequencies
8.15.4 Multistage Amplifiers

8.16 MOSFETs versus BJTs

8.17 Design of Amplifiers
8.17.1 BJT Amplifier Design
 - Designing for Specified Voltage Gain
 - Designing for Specified Input Resistance

Chapter 9 – Differential Amplifiers

9.1 Introduction

9.2 Internal Structure of Differential Amplifiers
 9.2.1 Characteristics of Differential Amplifiers
 9.2.2 Internal Structure of Differential Amplifiers

9.3 MOSFET Current Sources
 9.3.1 Basic Current Source
 9.3.2 Modified Basic Current Source
 - Output Resistance R_o
 9.3.3 Multiple Current Sources
 - Output Resistance R_o
 9.3.4 Cascode Current Source
 9.3.5 Wilson Current Source
 9.3.6 Design of Active Current Sources

9.4 MOS Differential Amplifiers
 9.4.1 NMOS Differential Pair
 - dc Transfer Characteristics
 - Small-Signal Analysis
9.4.2 MOS Differential Pair with Active Load 575
9.4.3 Cascoded MOS Differential Amplifier 578
9.5 Depletion MOS Differential Amplifiers 580
 9.5.1 Depletion MOS Differential Pair with Resistive Load 581
 dc Transfer Characteristics 581
 Small-Signal Analysis 583
 9.5.2 Depletion MOS Differential Pair with Active Load 585
9.6 BJT Current Sources 586
 9.6.1 Basic Current Source 586
 Output Resistance Ro 587
 9.6.2 Modified Basic Current Source 589
 Output Resistance Ro 590
 9.6.3 Widlar Current Source 591
 Output Resistance Ro 593
 9.6.4 Cascode Current Source 595
 9.6.5 Wilson Current Source 596
 Output Resistance Ro 598
 9.6.6 Multiple Current Sources 601
9.7 BJT Differential Amplifiers 602
 9.7.1 BJT Differential Pair with Resistive Load 602
 dc Transfer Characteristics 603
 Small-Signal Analysis 606
 9.7.2 BJT Differential Amplifiers with Basic Current Mirror Active Load 613
 Small-Signal Analysis 614
 9.7.3 Differential Amplifier with Modified Current Mirror 615
 9.7.4 Cascode Differential Amplifier 617
9.8 BiCMOS Differential Amplifiers 620
 9.8.1 BJT versus CMOS Amplifiers 620
 9.8.2 BiCMOS Amplifiers 621
 9.8.3 Cascode BiCMOS Amplifiers 622
 9.8.4 Double-Cascode BiCMOS Amplifiers 623
9.9 Frequency Response of Differential Amplifiers 626
 9.9.1 Frequency Response with Resistive Load 626
 9.9.2 Frequency Response with Active Load 627
9.10 Design of Differential Amplifiers 628

Chapter 10 – Feedback Amplifiers

10.1 Introduction 642
10.2 Feedback 643
10.3 Characteristics of Feedback 644
 10.3.1 Closed-Loop Gain 644
 10.3.2 Gain Sensitivity 646
 10.3.3 Feedback Factor Sensitivity 646
 10.3.4 Frequency Response 648
 10.3.5 Distortion 649
10.4 Feedback Topologies 652
 10.4.1 Feedback Configurations 652
 10.4.2 Feedback Relationships 655
10.5 Analysis of Feedback Amplifiers 656
10.6 Series-Shunt Feedback 657
 10.6.1 Analysis of an Ideal Series-Shunt Feedback Network 658
 10.6.2 Analysis of a Practical Series-Shunt Feedback Network 661
10.7 Series-Series Feedback 667
 10.7.1 Analysis of an Ideal Series-Series Feedback Network 669
 10.7.2 Analysis of a Practical Series-Series Feedback Network 670
10.8 Shunt-Shunt Feedback 677
10.8.1 Analysis of an Ideal Shunt-Shunt Feedback Network 678
10.8.2 Analysis of a Practical Shunt-Shunt Feedback Network 680

10.9 Shunt-Series Feedback
10.9.1 Analysis of an Ideal Shunt-Series Feedback Network 688
10.9.2 Analysis of a Practical Shunt-Series Feedback Network 688

10.10 Feedback Circuit Design 692

10.11 Stability Analysis
10.11.1 Closed-Loop Frequency and Stability 698
10.11.2 Poles and Instability 699
10.11.3 Transient Response and Stability 699
10.11.4 Closed-Loop Poles and Stability 700
10.11.5 Nyquist Stability Criterion 703
10.11.6 Relative Stability 704
10.11.7 Effects of Phase Margin 705
10.11.8 Stability Using Bode Plots 707

10.12 Compensation Techniques 711
10.12.1 Addition of a Dominant Pole 711
10.12.2 Changing the Dominant Pole 713
10.12.3 Miller Compensation and Pole Splitting 715
10.12.4 Modification of the Feedback Path 717

Chapter 11 – Power Amplifiers

11.1 Introduction 740
11.2 Classification of Power Amplifiers 740
11.3 Power Transistors 743
11.4 Class A Amplifiers 745
11.4.1 Emitter Followers 745
 Transfer Characteristic 746
 Signal Waveforms 746
 Output Power and Efficiency 746
11.4.2 Basic Common-Emitter Amplifier 749
 Transfer Characteristic 749
 Output Power and Efficiency 750
11.4.3 Common-Emitter Amplifiers with Active Load 752
 Transfer Characteristic 752
 Output Power and Efficiency 753
11.4.4 Transformer-Coupled Load Common-Emitter Amplifier 753

11.5 Class B Push-Pull Amplifiers 756
11.5.1 Complementary Push-Pull Amplifiers 756
 Output Power and Efficiency 757
 Dead-Zone Minimization 759
11.5.2 Transformer-Coupled Load Push-Pull Amplifier 761
 Signal Waveforms 761
 Output Power and Efficiency 762
 dc Biasing 764

11.6 Complementary Class AB Push-Pull Amplifiers 766
11.6.1 Transfer Characteristic 767
11.6.2 Output Power and Efficiency 767
11.6.3 Biasing with Diodes 767
11.6.4 Biasing with Diodes and an Active Current Source 769
 Transfer Characteristic 770
11.6.5 Biasing with a VBE Multiplier 772
11.6.6 Quasi-Complementary Class AB Amplifiers 775
11.6.7 Transformer-Coupled Class AB Amplifiers 776

11.7 Class C Amplifiers 777
11.8 Class D Amplifiers 784
11.10 Short-Circuit and Thermal Protection 786
11.10.1 Short-Circuit Protection 786
11.10.2 Thermal Protection 787
11.11 Power Op-Amps 788
11.11.1 IC Power Amplifiers 789
Power Op-Amp LH0021 789
Power Op-Amp LM380 790
11.11.2 Bridge Amplifier 791
11.12 Thermal Considerations 792
11.12.1 Thermal Resistance 793
11.12.2 Heat Sink and Heat Flow 793
11.12.3 Power Dissipation versus Temperature 794
11.13 Design of Power Amplifiers 796

Chapter 12 – Active Filters

12.1 Introduction 804
12.2 Active versus Passive Filters 804
12.3 Types of Active Filters 805
12.4 First-Order Filters 808
12.5 The Biquadratic Function 810
12.6 Butterworth Filters 814
12.6.1 Butterworth Function for \(n = 1 \) 815
12.6.2 Butterworth Function for \(n = 2 \) 815
12.6.3 Butterworth Function for \(n = 3 \) 816
12.6.4 Butterworth Function for Higher-Order Filters 816
12.7 Transfer Function Realization 818
12.8 Low-Pass Filters 819
12.8.1 First-Order Low-Pass Filters 819
12.8.2 Second-Order Low-Pass Filters 822
12.8.3 Butterworth Low-Pass Filters 826
12.9 High-Pass Filters 829
12.9.1 First-Order High-Pass Filters 829
12.9.2 Second-Order High-Pass Filters 831
12.9.3 Butterworth High-Pass Filters 834
12.10 Band-Pass Filters 837
12.10.1 Wide-Band-Pass Filters 837
12.10.2 Narrow-Band-Pass Filters 840
12.11 Band-Reject Filters 843
12.11.1 Wide-Band-Reject Filters 844
12.11.2 Narrow-Band-Reject Filters 846
12.12 All-Pass Filters 848
12.13 Switched-Capacitor Filters 849
12.13.1 Switched-Capacitor Resistors 850
12.13.2 Switched-Capacitor Integrators 851
12.13.3 Universal Switched-Capacitor Filters 851
12.14 Filter Design Guidelines 854

Chapter 13 - Oscillators

13.1 Introduction 862
13.2 Principles of Oscillators 862
13.2.1 Conditions for Oscillations 863
13.2.2 Frequency Stability 866
13.2.3 Amplitude Stability 866
13.3 Audio-Frequency Oscillators 867
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.3.1 Phase-Shift Oscillators</td>
<td>867</td>
</tr>
<tr>
<td>13.3.2 Quadrature Oscillators</td>
<td>871</td>
</tr>
<tr>
<td>13.3.3 Three-Phase Oscillators</td>
<td>873</td>
</tr>
<tr>
<td>13.3.4 Wien-Bridge Oscillators</td>
<td>874</td>
</tr>
<tr>
<td>13.3.5 Ring Oscillators</td>
<td>878</td>
</tr>
<tr>
<td>13.4 Radio Frequency Oscillators</td>
<td>881</td>
</tr>
<tr>
<td>13.4.1 Colpitts Oscillators</td>
<td>881</td>
</tr>
<tr>
<td>13.4.2 Hartley Oscillators</td>
<td>888</td>
</tr>
<tr>
<td>13.4.3 Two-Stage MOS Oscillators</td>
<td>891</td>
</tr>
<tr>
<td>13.5 Crystal Oscillators</td>
<td>895</td>
</tr>
<tr>
<td>13.6 Active-Filter Tuned Oscillators</td>
<td>899</td>
</tr>
<tr>
<td>13.7 Design of Oscillators</td>
<td>902</td>
</tr>
<tr>
<td>Chapter 14 – Operational Amplifiers</td>
<td></td>
</tr>
<tr>
<td>14.1 Introduction</td>
<td>910</td>
</tr>
<tr>
<td>14.2 Internal Structure of Op-Amps</td>
<td>910</td>
</tr>
<tr>
<td>14.3 Parameters and Characteristics of Practical Op-Amps</td>
<td>911</td>
</tr>
<tr>
<td>14.3.1 Input Biasing Current</td>
<td>912</td>
</tr>
<tr>
<td>14.3.2 Input Offset Current</td>
<td>914</td>
</tr>
<tr>
<td>14.3.3 Input Offset Voltage</td>
<td>917</td>
</tr>
<tr>
<td>14.3.4 Power Supply Rejection Ratio</td>
<td>918</td>
</tr>
<tr>
<td>14.3.5 Thermal Voltage Drift</td>
<td>919</td>
</tr>
<tr>
<td>14.3.6 Determining the Thermal Voltage Drift</td>
<td>920</td>
</tr>
<tr>
<td>BJT Amplifiers</td>
<td>921</td>
</tr>
<tr>
<td>CMOS Amplifiers</td>
<td>921</td>
</tr>
<tr>
<td>14.3.7 Offset Voltage Adjustment</td>
<td>922</td>
</tr>
<tr>
<td>14.3.8 Common-Mode Rejection Ratio</td>
<td>925</td>
</tr>
<tr>
<td>14.3.9 Input Resistance</td>
<td>925</td>
</tr>
<tr>
<td>14.3.10 Output Resistance</td>
<td>927</td>
</tr>
<tr>
<td>14.3.11 Frequency Response</td>
<td>927</td>
</tr>
<tr>
<td>Effects of Cx on Unity-Gain Bandwidth</td>
<td>928</td>
</tr>
<tr>
<td>Effects of Cx on Zeros</td>
<td>929</td>
</tr>
<tr>
<td>14.3.12 Slew Rate</td>
<td>930</td>
</tr>
<tr>
<td>Relation between SR and fu</td>
<td>931</td>
</tr>
<tr>
<td>14.4 CMOS Op-Amps</td>
<td>933</td>
</tr>
<tr>
<td>14.4.1 Basic CMOS Op-Amp</td>
<td>933</td>
</tr>
<tr>
<td>14.4.2 CMOS Op-Amp MC14573</td>
<td>934</td>
</tr>
<tr>
<td>Differential Stage</td>
<td>935</td>
</tr>
<tr>
<td>Gain Stage</td>
<td>935</td>
</tr>
<tr>
<td>DC Biasing</td>
<td>935</td>
</tr>
<tr>
<td>14.4.3 CMOS Op-Amp TLC1078</td>
<td>937</td>
</tr>
<tr>
<td>Differential Stage</td>
<td>938</td>
</tr>
<tr>
<td>Gain Stage</td>
<td>938</td>
</tr>
<tr>
<td>Output Stage</td>
<td>938</td>
</tr>
<tr>
<td>DC Biasing</td>
<td>939</td>
</tr>
<tr>
<td>14.5 BJT Op-Amps</td>
<td>940</td>
</tr>
<tr>
<td>14.5.1 BJT Op-Amp LM124</td>
<td>940</td>
</tr>
<tr>
<td>Differential Stage</td>
<td>940</td>
</tr>
<tr>
<td>Gain Stage</td>
<td>941</td>
</tr>
<tr>
<td>Output Stage</td>
<td>942</td>
</tr>
<tr>
<td>14.5.2 BJT Op-Amp LM741</td>
<td>942</td>
</tr>
<tr>
<td>Differential Stage</td>
<td>942</td>
</tr>
<tr>
<td>Gain Stage</td>
<td>944</td>
</tr>
<tr>
<td>Output Stage</td>
<td>944</td>
</tr>
<tr>
<td>Protection Circuitry</td>
<td>944</td>
</tr>
<tr>
<td>14.6 Analysis of the LM741 Op-Amp</td>
<td>944</td>
</tr>
<tr>
<td>14.6.1 DC Analysis</td>
<td>944</td>
</tr>
<tr>
<td>Biasing Circuit</td>
<td>945</td>
</tr>
</tbody>
</table>
Chapter 14 – BiCMOS Op-Amps

14.6.2 Small-Signal AC Analysis 951
- Input Stage 952
- Gain Stage 957
- Output Stage 958
14.6.3 Frequency-Response Analysis 961
14.6.4 Small-Signal Equivalent Circuit 961

14.7 BiCMOS Op-Amps 962
14.7.1 BiCMOS Op-Amp CA3130 962
- Differential Stage 963
- Gain Stage 964
- Output Stage 964
14.7.2 BiCMOS Op-Amp CA3140 964
- Output Stage 965
14.7.3 BiCMOS Op-Amp LH0022 965
- Differential Stage 965
- Gain Stage 967
- Output Stage 967
- Protection Circuitry 967
- Biasing Circuitry 967
14.7.4 BiCMOS Op-Amp LF411 969
- DC Biasing 970
- Thermal Protection 971
14.7.5 BiCMOS Op-Amp LH0062 971
- Differential Stage 971
- Gain Stage 972
14.7.6 BiCMOS Op-Amp LH0032 973
14.8 Design of Op-Amps 974

Chapter 15 – Introduction to Digital Electronics

15.1 Introduction 982
15.2 Logic States 982
15.3 Logic Gates 983
15.4 Performance Parameters of Logic Gates 985
15.4.1 Voltage Transfer Characteristic 986
15.4.2 Noise Margins 987
15.4.3 Fan-Out and Fan-In 988
15.4.4 Propagation Delay 991
15.4.5 Power Dissipation 992
- Static Power 993
- Dynamic Power 993
15.4.6 Delay-Power Product 995
15.5 NMOS Inverters 996
15.5.1 NMOS Inverter with Enhancement Load 996
- Enhancement Load 996
- Static Characteristics 997
- Body Effect 1001
15.5.2 NMOS Inverter with Depletion Load 1005
- Static Characteristics 1005
- Body Effect 1008
15.5.3 Comparison of NMOS Inverters 1013
15.6 NMOS Logic Circuits 1014
15.6.1 NMOS Transmission Gates 1014
15.6.2 NMOS NOR Gates 1015
15.6.3 NMOS NAND Gates 1016
15.7 CMOS Inverters 1016
15.8 CMOS Logic Circuits 1022
 15.8.1 CMOS Transmission Gates 1022
 Propagation Delay 1023
 15.8.2 CMOS NOR and NAND Gates 1024
 15.8.3 CMOS Families 1025
15.9 Comparison of CMOS and NMOS Gates 1026
15.10 BJT Inverters 1026
 15.10.1 Voltage Transfer Characteristics 1027
 15.10.2 Switching Characteristics 1028
15.11 Transistor-Transistor Logic Gates 1033
 15.11.1 Standard TTL Gates 1034
 15.11.2 High-Speed TTL NAND Gates 1042
 15.11.3 Schottky TTL NAND Gates 1047
15.12 Emitter-Coupled Logic OR/NOR Gates 1049
15.13 BiCMOS Inverters 1057
 15.13.1 Propagation Delay 1058
15.14 Interfacing of Logic Gates 1060
 15.14.1 TTL Driving CMOS 1060
 Current Sinking 1061
 Current Sourcing 1061
 15.14.2 CMOS Driving TTL 1062
 Current Sourcing 1062
 Current Sinking 1063
15.15 Comparison of Logic Gates 1063
15.16 Design of Logic Circuits 1064

Chapter 16 – Integrated Analog Circuits and Applications

16.1 Introduction 1080
16.2 Circuits with Op-Amps and Diodes 1080
 16.2.1 Most Positive Signal Detectors 1081
 16.2.2 Precision Peak Voltage Detectors 1081
 16.2.3 Precision Half-Wave Rectifiers 1082
 16.2.4 Precision Full-Wave Rectifiers 1084
 16.2.5 Precision Clamping Circuits 1085
 16.2.6 Fixed-Voltage Limiters 1086
 16.2.7 Adjustable Voltage Limiters 1086
 16.2.8 Zener Voltage Limiters 1093
 16.2.9 Hard Limiters 1094
16.3 Comparators 1097
 16.3.1 Comparators versus Op-Amps 1098
 16.3.2 Output-Side Connection 1098
 16.3.3 Threshold Comparators 1098
16.4 Zero-Crossing Detectors 1100
16.5 Schmitt Triggers 1101
 16.5.1 Inverting Schmitt Trigger 1102
 Transfer Characteristics 1103
 Effect of Positive Feedback 1103
 16.5.2 Noninverting Schmitt Trigger 1105
 Transfer Characteristics 1106
 16.5.3 Schmitt Trigger with Reference Voltage 1106
 16.5.4 Effects of Hysteresis on the Output Voltage 1107
16.6 Square-Wave Generators 1110
16.7 Triangular-Wave Generators 1113
16.8 Sawtooth-Wave Generators 1117
16.9 Voltage-Controlled Oscillators 1120
Appendix A – Introduction to OrCAD

A.1 Introduction

Appendix A – Introduction to OrCAD

A.2 Installing the Software

A.2.1 Introduction

A.3 Overview

A.3.1 Introduction

A.4 The Circuit Analysis Process

A.4.1 Introduction

A.5 Drawing the Circuit

A.5.1 Introduction

A.6 Selecting the Type of Analysis

A.6.1 Introduction

A.7 Simulation with PSpice

A.7.1 Introduction

A.8 Circuit Design Using Analog Integrated Circuits

A.8.1 Introduction
Appendix B - Review of Basic Circuits

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.1 Introduction</td>
<td>1214</td>
</tr>
<tr>
<td>B.2 Kirchhoff’s Current Law</td>
<td>1214</td>
</tr>
<tr>
<td>B.3 Kirchhoff’s Voltage Law</td>
<td>1216</td>
</tr>
<tr>
<td>B.4 Superposition Theorem</td>
<td>1219</td>
</tr>
<tr>
<td>B.5 Thevenin’s Theorem</td>
<td>1221</td>
</tr>
<tr>
<td>B.6 Norton’s Theorem</td>
<td>1226</td>
</tr>
<tr>
<td>B.7 Maximum Power Transfer Theorem</td>
<td>1227</td>
</tr>
<tr>
<td>B.8 Transient Response of First-Order Circuits</td>
<td>1228</td>
</tr>
<tr>
<td>B.8.1 Step Response of Series RC Circuits</td>
<td>1229</td>
</tr>
<tr>
<td>B.8.2 Step Response of Series CR Circuits</td>
<td>1230</td>
</tr>
<tr>
<td>B.8.3 Pulse Response of Series RC Circuits</td>
<td>1231</td>
</tr>
<tr>
<td>B.8.4 Pulse Response of Series CR Circuits</td>
<td>1234</td>
</tr>
<tr>
<td>B.8.5 Step Response of Series RL Circuits</td>
<td>1237</td>
</tr>
<tr>
<td>B.9 Resonant Circuits</td>
<td>1238</td>
</tr>
<tr>
<td>B.9.1 Series Resonant Circuits</td>
<td>1239</td>
</tr>
<tr>
<td>B.9.2 Parallel Resonant Circuits</td>
<td>1240</td>
</tr>
<tr>
<td>B.10 Frequency Response of First- and Second-Order Circuits</td>
<td>1243</td>
</tr>
<tr>
<td>B.10.1 First-Order Low-Pass RC Circuits</td>
<td>1244</td>
</tr>
<tr>
<td>B.10.2 First-Order High-Pass CR Circuits</td>
<td>1246</td>
</tr>
<tr>
<td>B.10.3 Second-Order Series RLC Circuits</td>
<td>1249</td>
</tr>
<tr>
<td>B.10.4 Second-Order Parallel RLC Circuits</td>
<td>1254</td>
</tr>
<tr>
<td>B.11 Time Constants of First-Order Circuits</td>
<td>1258</td>
</tr>
</tbody>
</table>

Appendix C - Low-Frequency Hybrid BJT Model

Appendix D - Ebers–Moll Model of Bipolar Junction Transistors

Appendix E - Passive Components

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>E.1 Resistors</td>
<td>1276</td>
</tr>
<tr>
<td>E.2 Potentiometers</td>
<td>1278</td>
</tr>
<tr>
<td>E.3 Capacitors</td>
<td>1279</td>
</tr>
</tbody>
</table>
Appendix F - Design Problems

<table>
<thead>
<tr>
<th>Design Project</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mini Design Projects</td>
<td>1282</td>
</tr>
<tr>
<td>Medium Design Projects</td>
<td>1282</td>
</tr>
<tr>
<td>Large Design Projects</td>
<td>1282</td>
</tr>
</tbody>
</table>