In this chapter, look for the answers to these questions:

- How does the money supply affect inflation and nominal interest rates?
- Does the money supply affect real variables like real GDP or the real interest rate?
- How is inflation like a tax?
- What are the costs of inflation? How serious are they?

Introduction

This chapter introduces the **quantity theory of money** to explain one of the Ten Principles of Economics from Chapter 1:

Prices rise when the govt prints too much money.

Most economists believe the quantity theory is
The Value of Money

- P = the price level
 (e.g., the CPI or GDP deflator)
- $\frac{1}{P}$ is
- Example: basket contains one candy bar.
 - If $P = $2, value of 1 is $\frac{1}{2}$ candy bar
 - If $P = $3, value of 1 is $\frac{1}{3}$ candy bar

Inflation drives up prices and

The Quantity Theory of Money

- Developed by 18th century philosopher David Hume and the classical economists
- Advocated more recently by Nobel Prize Laureate Milton Friedman
- We study this theory using two approaches:
 1. A supply-demand diagram
 2. An equation

Money Supply (M_S)

- In real world, determined by Federal Reserve, the banking system, consumers.
- In this model, we assume
Money Demand (MD)

- Refers to
- Depends on

Thus, quantity of money demanded is __________ related to the value of money and __________ related to \(P \), other things equal.
(These “other things” include real income, interest rates, availability of ATMs.)

The Money Supply-Demand Diagram

<table>
<thead>
<tr>
<th>Value of Money, (1/P)</th>
<th>Quantity of Money</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4%</td>
<td>1.33</td>
</tr>
<tr>
<td>2%</td>
<td>2</td>
</tr>
<tr>
<td>1%</td>
<td>4</td>
</tr>
<tr>
<td>1/4</td>
<td>1000</td>
</tr>
</tbody>
</table>

The Fed sets \(MS \) at some fixed value, regardless of \(P \).
A fall in value of money (or increase in P) increases the quantity of money demanded:

The Money Supply-Demand Diagram

The Effects of a Monetary Injection

Suppose the Fed increases the money supply.
A Brief Look at the Adjustment Process

Result from graph: Increasing MS causes P to rise.

How does this work? Short version:

- At the initial P, an increase in MS causes
 - People get rid of their excess money by spending it on g&s or by loaning it to others, who spend it.
 - Result:
 - But supply of goods

(Other things happen in the short run, which we will study in later chapters.)

Real vs. Nominal Variables

Nominal variables

Examples: nominal GDP, nominal interest rate (rate of return measured in $), nominal wage ($ per hour worked)

Real variables

Examples: real GDP, real interest rate (measured in output), real wage (measured in output)

Prices are normally measured in terms of money.

- Price of a compact disc: $15/cd
- Price of a pepperoni pizza: $10/pizza

A relative price

- Relative price of CDs in terms of pizza:

Relative prices are measured in _______________, so they are real variables.
Real vs. Nominal Wage

An important relative price is the real wage:

\[W = \text{nominal wage} = \text{price of labor}, \ e.g., \$15/\text{hour} \]

\[P = \text{price level} = \text{price of g&s}, \ e.g., \$5/\text{unit of output} \]

Real wage is the price of labor relative to the price of output:

The Classical Dichotomy

- Classical dichotomy:

- Hume and the classical economists suggested that

- If central bank doubles the money supply, Hume & classical thinkers contend

- all nominal variables

- all real variables

The Neutrality of Money

- Monetary neutrality: the proposition that

- Doubling money supply causes all nominal prices to double; what happens to relative prices?

- Initially, relative price of cd in terms of pizza is

\[\frac{\text{price of cd}}{\text{price of pizza}} = \frac{15/\text{cd}}{10/\text{pizza}} = 1.5 \text{ pizzas per cd} \]

- After nominal prices double, relative price of cd in terms of pizza is

\[\frac{\text{price of cd}}{\text{price of pizza}} = \frac{30/\text{cd}}{20/\text{pizza}} = \text{ pizzas per cd} \]
The Neutrality of Money

- Similarly, the real wage W/P
- quantity of labor supplied
- quantity of labor demanded
- total employment of labor
- The same applies to employment of capital and other resources.
- Since employment of all resources is ____________, total output is also unchanged by the money supply.

The Neutrality of Money

- Most economists believe the classical dichotomy and neutrality of money describe the economy in the long run.
- In later chapters, we will see that monetary changes can have important short-run effects on real variables.

The Velocity of Money

- Velocity of money:

- Notation:
 $P \times Y = \text{nominal GDP}$
 $= (\text{price level}) \times (\text{real GDP})$
 $M = \text{money supply}$
 $V = \text{velocity}$

- Velocity formula:
The Velocity of Money

Example with one good: pizza.

In 2008,
- \(Y \) = real GDP = 3000 pizzas
- \(P \) = price level = price of pizza = $10
- \(P \times Y \) = nominal GDP = value of pizzas = $30,000
- \(M \) = money supply = $10,000
- \(V \) = velocity =

Active Learning 1

Exercise

One good: corn.

The economy has enough labor, capital, and land to produce \(Y = 800 \) bushels of corn.

\(V \) is constant.

In 2008, \(MS = \$2000, \ P = \$5 \) bushel.

Compute nominal GDP and velocity in 2008.

Answers
The Quantity Equation

Velocity formula: \[V = \frac{P \times Y}{M} \]

- Multiply both sides of formula by \(M \):

- Called the quantity equation

The Quantity Theory in 5 Steps

Start with quantity equation: \(M \times V = P \times Y \)

1. \(V \) is stable.
2. So, a change in \(M \) causes

3. A change in \(M \)
 money is neutral,
 \(Y \) is determined by

4. So, \(P \) changes by

5. Rapid money supply growth causes rapid inflation.
Exercise

One good: corn. The economy has enough labor, capital, and land to produce $Y = 800$ bushels of corn. V is constant. In 2008, $MS = $2000, $P = $5/bushel.

For 2009, the Fed increases MS by 5%, to $2100.$

Answers

Summary and Lessons about the Quantity Theory of Money

- If real GDP is constant, then
- If real GDP is growing, then
- The bottom line:
 - Economic growth increases # of transactions.
Hyperinflation

- Hyperinflation is generally defined as

- Recall one of the Ten Principles from Chapter 1: *Prices rise when the government prints too much money.*

The Inflation Tax

- When tax revenue is inadequate and ability to borrow is limited, govt may print money to pay for its spending.

- Almost all hyperinflations start this way.

- Inflation tax:

 - In the U.S., the inflation tax today accounts for less than 3% of total revenue.

The Fisher Effect

- Rearrange the definition of the real interest rate:

 - The real interest rate is determined by saving & investment in the loanable funds market.

 - So, this equation shows how the nominal interest rate is determined.
The Fisher Effect

- In the long run, money is neutral, so a change in the money growth rate affects the inflation rate but not the real interest rate.
- So, the nominal interest rate

- This relationship is called the Fisher effect after Irving Fisher, who studied it.

The Fisher Effect & the Inflation Tax

- The inflation tax applies to people’s holdings of money, not their holdings of wealth.
- The Fisher effect: an increase in inflation causes an equal increase in the nominal interest rate, so the real interest rate (on wealth) is unchanged.
The Costs of Inflation

The inflation fallacy:

But inflation is a general increase in prices of the things people buy and

In the long run,

U.S. Average Hourly Earnings & the CPI

Nominal wage (right scale)

CPI (left scale)

The Costs of Inflation

Shoeleather costs: the resources wasted when inflation encourages people to reduce their money holdings

Menu costs:
The Costs of Inflation

- Misallocation of resources from relative-price variability:
 Firms don’t all raise prices at the same time, so relative prices can vary… which distorts the allocation of resources.

- Confusion & inconvenience:
 Inflation changes the yardstick we use to measure transactions.
 Complicates long-range planning and the comparison of dollar amounts over time.

The Costs of Inflation

- Tax distortions:

ACTIVE LEARNING 3

Tax distortions

You deposit $1000 in the bank for one year.

CASE 1: inflation = 0%, nom. interest rate = 10%
CASE 2: inflation = 10%, nom. interest rate = 20%

a. In which case does the real value of your deposit grow the most?

Assume the tax rate is 25%.

b. In which case do you pay the most taxes?

c. Compute the after-tax nominal interest rate, then subtract off inflation to get the after-tax real interest rate for both cases.
A Special Cost of Unexpected Inflation

- **Arbitrary redistributions of wealth**
 - Higher-than-expected inflation
 - Debtors get to repay their debt with dollars that aren’t worth as much.
 - Lower-than-expected inflation
 - High inflation

 So, these arbitrary redistributions are frequent when inflation is high.

The Costs of Inflation

- All these costs are quite high for economies experiencing hyperinflation.
- For economies with low inflation (< 10% per year), these costs are probably much smaller, though their exact size is open to debate.
CONCLUSION

This chapter explains one of the Ten Principles of economics:

Prices rise when the govt prints too much money.

We saw that

In later chapters, we will see that money has important effects in the short run on real variables like output and employment.