Managerial Economics
Applications, Strategy, and Tactics

TWELFTH EDITION

JAMES R. MCGUIGAN
JRM Investments

R. CHARLES MOYER
University of Louisville

FREDERICK H. deB. HARRIS
Schools of Business
Wake Forest University
To my family
J.R.M.

To Sally, Laura, and Craig
R.C.M.

To my family, Roger Sherman, and Ken Elzinga
F.H.B.H.
TABLE OF CONTENTS

Preface, xvii
About the Authors, xxi

PART I

INTRODUCTION 1
1 Introduction and Goals of the Firm 2
2 Fundamental Economic Concepts 26

PART II

DEMAND AND FORECASTING 61
3 Demand Analysis 62
4 Estimating Demand 95
4A Problems in Applying the Linear Regression Model 126
5 Business and Economic Forecasting 137
6 Managing in the Global Economy 175
6A Foreign Exchange Risk Management 227

PART III

PRODUCTION AND COST 229
7 Production Economics 230
7A Maximization of Production Output Subject to a Cost Constraint 265
7B Production Economics of Renewable and Exhaustible Natural Resources 267
8 Cost Analysis 275
8A Long-Run Costs with a Cobb-Douglas Production Function 301
9 Applications of Cost Theory 305

PART IV

PRICING AND OUTPUT DECISIONS: STRATEGY AND TACTICS 333
10 Prices, Output, and Strategy: Pure and Monopolistic Competition 334
11 Price and Output Determination: Monopoly and Dominant Firms 382
12 Price and Output Determination: Oligopoly 409
13 Best-Practice Tactics: Game Theory 444
13A Entry Deterrence and Accommodation Games 488
14 Pricing Techniques and Analysis 499

PART V

ORGANIZATIONAL ARCHITECTURE AND REGULATION 545
15 Contracting, Governance, and Organizational Form 546
15A Auction Design and Information Economics 580
16 Government Regulation 610
17 Long-Term Investment Analysis 644

APPENDICES

A The Time Value of Money A-1
B Tables B-1
C Differential Calculus Techniques in Management C-1
D Check Answers to Selected End-of-Chapter Exercises D-1
Glossary G-1
Index I-1
Notes

WEB APPENDICES

A Consumer Choice Using Indifference Curve Analysis
B International Parity Conditions
C Linear-Programming Applications
D Capacity Planning and Pricing Against a Low-Cost Competitor: A Case Study of Piedmont Airlines and People Express
E Pricing of Joint Products and Transfer Pricing
F Decisions Under Risk and Uncertainty
Contents

Preface, xvii
About the Authors, xxi

PART I

INTRODUCTION 1

1 Introduction and Goals of the Firm 2
Chapter Preview 2
Managerial Challenge: How to Achieve Sustainability: Southern Company 2
What is Managerial Economics? 4
The Decision-Making Model 5
The Responsibilities of Management 5
The Role of Profits 6
Risk-Bearing Theory of Profit 7
Temporary Disequilibrium Theory of Profit 7
Monopoly Theory of Profit 7
Innovation Theory of Profit 7
Managerial Efficiency Theory of Profit 7
Objective of the Firm 8
The Shareholder Wealth-Maximization Model of the Firm 8
Separation of Ownership and Control: The Principal-Agent Problem 9
Divergent Objectives and Agency Conflict 10
Agency Problems 11
What Went Right/What Went Wrong: Saturn Corporation 13
Implications of Shareholder Wealth Maximization 13
What Went Right/What Went Wrong: Eli Lilly Depressed by Loss of Prozac Patent 14
Caveats to Maximizing Shareholder Value 16
Residual Claimants 17
Goals in the Public Sector and Not-for-Profit Enterprises 18
Not-for-Profit Objectives 18
The Efficiency Objective in Not-for-Profit Organizations 19
Summary 19
Exercises 20

Case Exercise: Designing a Managerial Incentives Contract 21
Case Exercise: Shareholder Value of Wind Power at Hydro Co.: RE < C 23

2 Fundamental Economic Concepts 26
Chapter Preview 26
Managerial Challenge: Why Charge $25 per Bag on Airline Flights? 26
Demand and Supply: A Review 27
The Diamond-Water Paradox and the Marginal Revolution 30
Marginal Utility and Incremental Cost Simultaneously Determine Equilibrium Market Price 30
Individual and Market Demand Curves 31
The Demand Function 32
Import-Export Traded Goods 34
Individual and Market Supply Curves 35
Equilibrium Market Price of Gasoline 36
Marginal Analysis 41
Total, Marginal, and Average Relationships 41
The Net Present Value Concept 45
Determining the Net Present Value of an Investment 46
Sources of Positive Net Present Value Projects 48
Risk and the NPV Rule 48
Meaning and Measurement of Risk 49
Probability Distributions 49
Expected Values 50
Standard Deviation: An Absolute Measure of Risk 51
Normal Probability Distribution 51
Coefficient of Variation: A Relative Measure of Risk 53
What Went Right/What Went Wrong: Long-Term Capital Management (LTCM) 53
Risk and Required Return 54
Summary 56
Exercises 56
Case Exercise: Revenue Management at American Airlines 58
PART II

DEMAND AND FORECASTING 61

3 Demand Analysis

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>62</td>
<td>Demand Analysis</td>
</tr>
<tr>
<td>62</td>
<td>Chapter Preview</td>
</tr>
<tr>
<td>62</td>
<td>Managerial Challenge: Health Care Reform and Cigarette Taxes</td>
</tr>
</tbody>
</table>

Demand Relationships
- The Demand Schedule Defined
- Constrained Utility Maximization and Consumer Behavior

What Went Right/What Went Wrong: Chevy Volt
- The Price Elasticity of Demand
 - Price Elasticity Defined
 - Arc Price Elasticity
 - Point Price Elasticity
- Interpreting the Price Elasticity:
 - The Relationship between the Price Elasticity and Revenues
 - The Importance of Elasticity-Revenue Relationships
 - Factors Affecting the Price Elasticity of Demand

International Perspectives: Free Trade and the Price Elasticity of Demand: Nestlé Yogurt
- The Income Elasticity of Demand
 - Income Elasticity Defined
 - Arc Income Elasticity
 - Point Income Elasticity
- Cross Elasticity of Demand
 - Cross Price Elasticity Defined
 - Interpreting the Cross Price Elasticity
 - Antitrust and Cross Price Elasticities
 - An Empirical Illustration of Price, Income, and Cross Elasticities
- The Combined Effect of Demand Elasticities

4 Estimating Demand

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>95</td>
<td>Estimating Demand</td>
</tr>
<tr>
<td>95</td>
<td>Chapter Preview</td>
</tr>
<tr>
<td>95</td>
<td>Managerial Challenge: Global Warming and the Demand for Public Transportation</td>
</tr>
</tbody>
</table>

Estimating Demand Using Marketing Research Techniques

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>98</td>
<td>Consumer Surveys</td>
</tr>
<tr>
<td>98</td>
<td>Consumer Focus Groups</td>
</tr>
<tr>
<td>99</td>
<td>Market Experiments in Test Stores</td>
</tr>
<tr>
<td>99</td>
<td>Statistical Estimation of the Demand Function</td>
</tr>
<tr>
<td>99</td>
<td>Specification of the Model</td>
</tr>
<tr>
<td>101</td>
<td>A Simple Linear Regression Model</td>
</tr>
<tr>
<td>102</td>
<td>Assumptions Underlying the Simple Linear Regression Model</td>
</tr>
<tr>
<td>103</td>
<td>Estimating the Population Regression Coefficients</td>
</tr>
<tr>
<td>106</td>
<td>Using the Regression Equation to Make Predictions</td>
</tr>
<tr>
<td>108</td>
<td>Inferences about the Population Regression Coefficients</td>
</tr>
<tr>
<td>111</td>
<td>Correlation Coefficient</td>
</tr>
<tr>
<td>112</td>
<td>The Analysis of Variance</td>
</tr>
<tr>
<td>114</td>
<td>Multiple Linear Regression Model</td>
</tr>
<tr>
<td>115</td>
<td>Use of Computer Programs</td>
</tr>
<tr>
<td>115</td>
<td>Estimating the Population Regression Coefficients</td>
</tr>
<tr>
<td>115</td>
<td>Using the Regression Model to Make Forecasts</td>
</tr>
<tr>
<td>118</td>
<td>Inferences about the Population Regression Coefficients</td>
</tr>
<tr>
<td>118</td>
<td>The Analysis of Variance</td>
</tr>
<tr>
<td>118</td>
<td>Summary</td>
</tr>
<tr>
<td>119</td>
<td>Exercises</td>
</tr>
<tr>
<td>124</td>
<td>Case Exercise: Soft Drink Demand Estimation</td>
</tr>
</tbody>
</table>

Problems in Applying the Linear Regression Model

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>126</td>
<td>Introduction</td>
</tr>
<tr>
<td>132</td>
<td>Nonlinear Regression Models</td>
</tr>
<tr>
<td>135</td>
<td>Summary</td>
</tr>
<tr>
<td>135</td>
<td>Exercises</td>
</tr>
</tbody>
</table>

5 Business and Economic Forecasting

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>137</td>
<td>Business and Economic Forecasting</td>
</tr>
<tr>
<td>137</td>
<td>Chapter Preview</td>
</tr>
<tr>
<td>137</td>
<td>Managerial Challenge: Excess Fiber Optic Capacity at Global Crossing Inc.</td>
</tr>
</tbody>
</table>

The Significance of Forecasting

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>139</td>
<td>Selecting a Forecasting Technique</td>
</tr>
<tr>
<td>139</td>
<td>Hierarchy of Forecasts</td>
</tr>
<tr>
<td>140</td>
<td>Criteria Used to Select a Forecasting Technique</td>
</tr>
<tr>
<td>140</td>
<td>Evaluating the Accuracy of Forecasting Models</td>
</tr>
</tbody>
</table>

What Went Right/What Went Wrong: Crocs Shoes
Alternative Forecasting Techniques 141
Deterministic Trend Analysis 141
Components of a Time Series 141
Some Elementary Time-Series Models 142
Secular Trends 143
Seasonal Variations 146
Smoothing Techniques 147
Moving Averages 148
First-Order Exponential Smoothing 151
Barometric Techniques 154
Leading, Lagging, and Coincident Indicators 154
Survey and Opinion-Polling Techniques 155
Forecasting Macroeconomic Activity 158
Sales Forecasting 159
Econometric Models 159
Advantages of Econometric Forecasting Techniques 159
Single-Equation Models 160
Multi-Equation Models 160
Consensus Forecasts: Blue Chip Forecaster Surveys 162
Stochastic Time-Series Analysis 163
Forecasting with Input-Output Tables 166
International Perspectives: Long-Term Sales Forecasting by General Motors in Overseas Markets 167
Summary 167
Exercises 168
Case Exercise: Cruise Ship Arrivals in Alaska 172
Case Exercise: Lumber Price Forecast 173

6 Managing in the Global Economy 175
Chapter Preview 175
Managerial Challenge: Financial Crisis Crushes U.S. Household Consumption and Business Investment: Will Exports to China Provide the Way Out? 175
Introduction 178
What Went Right/What Went Wrong: Export Market Pricing at Toyota 179
Import-Export Sales and Exchange Rates 179
Foreign Exchange Risk 180
International Perspectives: Collapse of Export and Domestic Sales at Cummins Engine 181
Outsourcing 183
China Trade Blossoms 185
China Today 186
The Market for U.S. Dollars as Foreign Exchange 187
Import/Export Flows and Transaction Demand for a Currency 189
The Equilibrium Price of the U.S. Dollar 189
Speculative Demand, Government Transfers, and Coordinated Intervention 189
Short-Term Exchange Rate Fluctuations 190
Determinants of Long-Run Trends in Exchange Rates 191
The Role of Real Growth Rates 191
The Role of Real Interest Rates 194
The Role of Expected Inflation 194
Purchasing Power Parity 195
PPP Offers a Better Yardstick of Comparative Growth 196
Relative Purchasing Power Parity 197
Qualifications of PPP 198
What Went Right/What Went Wrong: GM, Toyota, and the Celica GT-S Coupe 199
The Appropriate Use of PPP: An Overview 200
Big Mac Index of Purchasing Power Parity 201
Trade-Weighted Exchange Rate Index 201
International Trade: A Managerial Perspective 204
Shares of World Trade and Regional Trading Blocs 204
Comparative Advantage and Free Trade 207
Import Controls and Protective Tariffs 209
The Case for Strategic Trade Policy 211
Increasing Returns 213
Network Externalities 214
Free Trade Areas: The European Union and NAFTA 214
Optimal Currency Areas 216
Intraregional Trade 216
Mobility of Labor 216
Correlated Macroeconomic Shocks 217
Largest U.S. Trading Partners: The Role of NAFTA 217
A Comparison of the EU and NAFTA 219
Gray Markets, Knockoffs, and Parallel Importing 220
What Went Right/What Went Wrong: Ford Motor Co. and Exide Batteries: Are Country Managers Here to Stay? 222
Perspectives on the U.S. Trade Deficit 222
Summary 224
Exercises 225
Case Exercise: Predicting the Long-Term Trends in Value of the U.S. Dollar and Euro 226
Case Exercise: Debating the Pros and Cons of NAFTA 226
6A Foreign Exchange Risk Management 227
PART III

PRODUCTION AND COST 229

7 Production Economics 230

Chapter Preview 230
Managerial Challenge: Green Power Initiatives Examined: What Went Wrong in California’s Deregulation of Electricity? 230
The Production Function 232
Fixed and Variable Inputs 234
Production Functions with One Variable Input 235
Marginal and Average Product Functions 235
The Law of Diminishing Marginal Returns 236
What Went Right/What Went Wrong: Factory Bottlenecks at a Boeing Assembly Plant 237
Increasing Returns with Network Effects 237
Producing Information Services under Increasing Returns 239
The Relationship between Total, Marginal, and Average Product 239
Determining the Optimal Use of the Variable Input 242
Marginal Revenue Product 242
Marginal Factor Cost 242
Optimal Input Level 243
Production Functions with Multiple Variable Inputs 243
Production Isoquants 243
The Marginal Rate of Technical Substitution 245
Determining the Optimal Combination of Inputs 248
Isocost Lines 248
Minimizing Cost Subject to an Output Constraint 249
A Fixed Proportions Optimal Production Process 250
Production Processes and Process Rays 251
Measuring the Efficiency of a Production Process 252
Returns to Scale 253
Measuring Returns to Scale 254
Increasing and Decreasing Returns to Scale 255
The Cobb-Douglas Production Function 255
Empirical Studies of the Cobb-Douglas Production Function in Manufacturing 256
A Cross-Sectional Analysis of U.S. Manufacturing Industries 256
Summary 259
Exercises 260

7A Maximization of Production Output Subject to a Cost Constraint 265
Exercises 266

7B Production Economics of Renewable and Exhaustible Natural Resources 267
Renewable Resources 267
Exhaustible Natural Resources 270
Exercises 274

8 Cost Analysis 275

Chapter Preview 275
Managerial Challenge: US Airways Cost Structure 275
The Meaning and Measurement of Cost 276
Accounting versus Economic Costs 276
Three Contrasts between Accounting and Economic Costs 277
Short-Run Cost Functions 281
Average and Marginal Cost Functions 281
Long-Run Cost Functions 286
Optimal Capacity Utilization: Three Concepts 286
Economies and Diseconomies of Scale 287
The Percentage of Learning 289
Diseconomies of Scale 291
International Perspectives: How Japanese Companies Deal with the Problems of Size 292
The Overall Effects of Scale Economies and Diseconomies 293
Summary 295
Exercise 295
Case Exercise: Cost Analysis 298

8A Long-Run Costs with a Cobb-Douglas Production Function 301
Exercises 304

9 Applications of Cost Theory 305

Chapter Preview 305
Managerial Challenge: How Exactly Have Computerization and Information Technology Lowered Costs at Chevron, Timken, and Merck? 305
Estimating Cost Functions 306
Issues in Cost Definition and Measurement 307
Controlling for Other Variables 307
The Form of the Empirical Cost-Output Relationship

What Went Right/What Went Wrong: Boeing: The Rising Marginal Cost of Wide-Bodies

Statistical Estimation of Short-Run Cost Functions

Statistical Estimation of Long-Run Cost Functions

Determining the Optimal Scale of an Operation

Economies of Scale versus Economies of Scope

Engineering Cost Techniques

The Survivor Technique

A Cautionary Tale

Break-Even Analysis

Graphical Method

Algebraic Method

Doing a Break-Even versus a Contribution Analysis

Some Limitations of Break-Even and Contribution Analysis

Operating Leverage

Business Risk

Break-Even Analysis and Risk Assessment

Summary

Exercises

Case Exercise: Cost Functions

Case Exercise: Charter Airline Operating Decisions

PART IV

PRICING AND OUTPUT DECISIONS: STRATEGY AND TACTICS

10 Prices, Output, and Strategy: Pure and Monopolistic Competition

Chapter Preview

Managerial Challenge: Resurrecting Apple

Introduction

Competitive Strategy

What Went Right/What Went Wrong: Xerox

Generic Types of Strategies

Product Differentiation Strategy

Cost-Based Strategy

Information Technology Strategy

The Relevant Market Concept

Porter’s Five Forces Strategic Framework

The Threat of Substitutes

The Threat of Entry

The Power of Buyers and Suppliers

The Intensity of Rivalrous Tactics

The Myth of Market Share

A Continuum of Market Structures

Pure Competition

Monopoly

Monopolistic Competition

Oligopoly

Price-Output Determination under Pure Competition

Short Run

Long Run

Price-Output Determination under Monopolistic Competition

What Went Right/What Went Wrong: The Dynamics of Competition at Amazon.com

The Threat of Substitutes

The Threat of Entry

The Power of Buyers and Suppliers

The Intensity of Rivalrous Tactics

The Myth of Market Share

A Continuum of Market Structures

Pure Competition

Monopoly

Monopolistic Competition

Oligopoly

Price-Output Determination under Pure Competition

Short Run

Long Run

Price-Output Determination under Monopolistic Competition

What Went Right/What Went Wrong: The Dynamics of Competition at Amazon.com

Selling and Promotional Expenses

Determining the Optimal Level of Selling and Promotional Outlays

Optimal Advertising Intensity

The Net Value of Advertising

Competitive Markets under Asymmetric Information

Incomplete versus Asymmetric Information

Search Goods versus Experience Goods

Adverse Selection and the Notorious Firm

Insuring and Lending under Asymmetric Information: Another Lemons Market

Solutions to the Adverse Selection Problem

Mutual Reliance: Hostage Mechanisms

Support Asymmetric Information Exchange

Brand-Name Reputations as Hostages

Price Premiums with Non-Redeployable Assets

Summary

Exercises

Case Exercise: Blockbuster, Netflix, and Redbox Compete for Movie Rentals

Case Exercise: Saving Sony Music

11 Price and Output Determination: Monopoly and Dominant Firms

Chapter Preview

Managerial Challenge: Dominant Microprocessor Company Intel Adapts to Next Trend
Monopoly Defined 383
Sources of Market Power for a Monopolist 383
Increasing Returns from Network Effects 384

What Went Right/What Went Wrong: Pilot Error at Palm 387
Price and Output Determination for a Monopolist 388
Spreadsheet Approach 388
Graphical Approach 389
Algebraic Approach 390
The Importance of the Price Elasticity of Demand 391
The Optimal Markup, Contribution Margin, and Contribution Margin Percentage 393
Components of the Gross Profit Margin 394
Monopolists and Capacity Investments 396
Limit Pricing 396
Regulated Monopolies 397
Electric Power Companies 397
Natural Gas Companies 399

What Went Right/What Went Wrong: The Public Service Company of New Mexico 400
Communications Companies 400
The Economic Rationale for Regulation 400
Natural Monopoly Argument 401
Summary 402
Exercises 403

12 Price and Output Determination: Oligopoly 409
Chapter Preview 409
Managerial Challenge: Are Nokia’s Margins on Cell Phones Collapsing? 409
Oligopolistic Market Structures 411
Oligopoly in the United States: Relative Market Shares 411
Interdependencies in Oligopolistic Industries 415
The Cournot Model 415
Cartels and Other Forms of Collusion 417
Factors Affecting the Likelihood of Successful Collusion 419
Cartel Profit Maximization and the Allocation of Restricted Output 421
International Perspectives: The OPEC Cartel 422
Cartel Analysis: Algebraic Approach 426

Price Leadership 429
Barometric Price Leadership 430
Dominant Firm Price Leadership 430
The Kinked Demand Curve Model 434
Avoiding Price Wars 434

What Went Right/What Went Wrong: Good-Better-Best Product Strategy at Kodak and Marriott 437
Summary 440
Exercises 440
Case Exercise: Cell Phones Displace Mobile Phone Satellite Networks 442

13 Best-Practice Tactics: Game Theory 444
Chapter Preview 444
Managerial Challenge: Large-Scale Entry Deterrence of Low-Cost Discounters: Southwest, People Express, Value Jet, Kiwi, and JetBlue 444
Oligopolistic Rivalry and Game Theory 445
A Conceptual Framework for Game Theory Analysis 446
Components of a Game 447
Cooperative and Noncooperative Games 449
Other Types of Games 449
Analyzing Simultaneous Games 450
The Prisoner’s Dilemma 450
Dominant Strategy and Nash Equilibrium Strategy Defined 452
The Escape from Prisoner’s Dilemma 455
Multiperiod Punishment and Reward Schemes in Repeated Play Games 455
Unraveling and the Chain Store Paradox 456
Mutual Forbearance and Cooperation in Repeated Prisoner’s Dilemma Games 458
Bayesian Reputation Effects 459
Winning Strategies in Evolutionary Computer Tournaments: Tit for Tat 459
Price-Matching Guarantees 461
Industry Standards as Coordination Devices 463
Analyzing Sequential Games 464
A Sequential Coordination Game 465
Subgame Perfect Equilibrium in Sequential Games 466
Business Rivalry as a Self-Enforcing Sequential Game 467
First-Mover and Fast-Second Advantages 469
Credible Threats and Commitments 471
Mechanisms for Establishing Credibility 472
Replacement Guarantees 473
Hostages Support the Credibility of Commitments 475
Contents

Credible Commitments of Durable Goods
 Monopolists 476
 Planned Obsolescence 476
 Post-Purchase Discounting Risk 477
 Lease Prices Reflect Anticipated Risks 480
Summary 480
Exercises 481
Case Exercise: International Perspectives:
 The Superjumbo Dilemma 485

13A Entry Deterrence and Accommodation
 Games 488
 Excess Capacity as a Credible Threat 488
 Pre-commitments Using Non-Redeployable Assets 488
 Customer Sorting Rules 491
 Tactical Insights about Slippery Slopes 495
Summary 497
Exercises 497

14 Pricing Techniques and Analysis 499
 Chapter Preview 499
 A Conceptual Framework for Proactive, Systematic-Analytical, Value-Based Pricing 500
 Optimal Differential Price Levels 503
 Graphical Approach 504
 Algebraic Approach 505
 Multiple-Product Pricing Decision 506
 Differential Pricing and the Price Elasticity of Demand 507
 Differential Pricing in Target Market Segments 512
 Direct Segmentation with “Fences” 513
 Optimal Two-Part Tariffs 515
 What Went Right/What Went Wrong:
 Two-Part Pricing at Disney World 517
 Couponing 517
 What Went Right/What Went Wrong:
 Price-Sensitive Customers Redeem 517
 Bundling 518
 Price Discrimination 521
 Pricing in Practice 523
 Product Life Cycle Framework 523
 Full-Cost Pricing versus Incremental Contribution Analysis 525
 Pricing on the Internet 527
 The Practice of Revenue Management, Advanced Material 529

A Cross-Functional Systems Management Process 531
Sources of Sustainable Price Premiums 531
Revenue Management Decisions, Advanced Material 533
Summary 540
Exercises 541

PART V ORGANIZATIONAL ARCHITECTURE AND REGULATION 545

15 Contracting, Governance, and Organizational Form 546
 Chapter Preview 546
 Managerial Challenge: Controlling the Vertical: Ultimate TV 546
 Introduction 547
 The Role of Contracting in Cooperative Games 547
 Vertical Requirements Contracts 549
 The Function of Commercial Contracts 549
 Incomplete Information, Incomplete Contracting, and Post-Contractual Opportunism 553
 Corporate Governance and the Problem of Moral Hazard 553
 The Need for Governance Mechanisms 555
 What Went Right/What Went Wrong:
 Moral Hazard and Holdup at Enron and WorldCom 556
 The Principal-Agent Model 557
 The Efficiency of Alternative Hiring Arrangements 557
 Work Effort, Creative Ingenuity, and the Moral Hazard Problem in Managerial Contracting 558
 Formalizing the Principal-Agent Problem 561
 Screening and Sorting Managerial Talent with Optimal Incentives Contracts 561
 What Went Right/What Went Wrong:
 Why Have Restricted Stock Grants Replaced Executive Stock Options at Microsoft? 562
 Choosing the Efficient Organizational Form 564
 What Went Right/What Went Wrong:
 Cable Allies Refuse to Adopt Microsoft’s WebTV as an Industry Standard 567
International Perspectives: Economies of Scale and International Joint
Ventures in Chip Making 568
Prospect Theory Motivates Full-Line Forcing 568
Vertical Integration 571
What Went Right/What Went Wrong: Dell Replaces Vertical Integration with
Virtual Integration 573
The Dissolution of Assets in a Partnership 574
Summary 575
Exercises 576
Case Exercise: Borders Books and Amazon.com Decide to Do Business Together 578
Case Exercise: Designing a Managerial Incentive Contract 578
Case Exercise: The Division of Investment Banking Fees in a Syndicate 578

Auction Design and Information Economics 580
Optimal Mechanism Design 580
First-Come, First-Served versus Last-Come, First-Served 581
Auctions 583
Incentive-Compatible Revelation Mechanisms 598
International Perspectives: Joint Venture in Memory Chips: IBM, Siemens, and Toshiba 603
International Perspectives: Whirlpool’s Joint Venture in Appliances Improves upon Maytag’s Outright Purchase of Hoover 605
Summary 605
Exercises 607
Case Exercise: Spectrum Auction 608
Case Exercise: Debugging Computer Software: Intel 608

Government Regulation 610
Chapter Preview 610
Managerial Challenge: Cap and Trade, Deregulation, and the Coase Theorem 610
The Regulation of Market Structure and Conduct 611
Market Performance 611
Market Conduct 612
Market Structure 612
Contestable Markets 614

Antitrust Regulation Statutes and Their Enforcement 614
The Sherman Act (1890) 614
The Clayton Act (1914) 615
The Federal Trade Commission Act (1914) 615
The Robinson-Patman Act (1936) 615
The Hart-Scott-Rodino Antitrust Improvement Act (1976) 616
Antitrust Prohibition of Selected Business Decisions 617
Collusion: Price Fixing 617
Mergers That Substantially Lessen Competition 617
Monopolization 619
Wholesale Price Discrimination 620
Refusals to Deal 622
Resale Price Maintenance Agreements 622
Command and Control Regulatory Constraints: An Economic Analysis 622
The Deregulation Movement 624

What Went Right/What Went Wrong: The Need for a Regulated Clearinghouse to Control Counterparty Risk at AIG 625
Regulation of Externalities 626
Coasian Bargaining for Reciprocal Externalities 626
Qualifications of the Coase Theorem 628
Impediments to Bargaining 629
Resolution of Externalities by Regulatory Directive 630
Resolution of Externalities by Taxes and Subsidies 630
Resolution of Externalities by Sale of Pollution Rights: Cap and Trade 632
Governmental Protection of Business 633
Licensing and Permitting 633
Patents 633
The Optimal Deployment Decision: To License or Not 634

What Went Right/What Went Wrong: Delayed Release at Aventis 635
Pros and Cons of Patent Protection and Licensure of Trade Secrets 636

What Went Right/What Went Wrong: Technology Licenses Cost Palm Its Lead in PDAs 637

What Went Right/What Went Wrong: Motorola: What They Didn’t Know Hurt Them 638
Conclusion on Licensing 639
Summary 640
Exercises 641
Case Exercise: Microsoft Tying Arrangements 643
Case Exercise: Music Recording Industry Blocked from Consolidating 643

17 Long-Term Investment Analysis 644
Chapter Preview 644
Managerial Challenge: Multigenerational Effects of Ozone Depletion and Greenhouse Gases 644
The Nature of Capital Expenditure Decisions 647
A Basic Framework for Capital Budgeting 647
The Capital Budgeting Process 647
Generating Capital Investment Projects 648
Estimating Cash Flows 649
Evaluating and Choosing the Investment Projects to Implement 650
Estimating the Firm’s Cost of Capital 653
Cost of Debt Capital 654
Cost of Internal Equity Capital 655
Cost of External Equity Capital 656
Weighted Cost of Capital 657
Cost-Benefit Analysis 658
Accept-Reject Decisions 658
Program-Level Analysis 659
Steps in Cost-Benefit Analysis 660
Objectives and Constraints in Cost-Benefit Analysis 660
Analysis and Valuation of Benefits and Costs 662
Direct Benefits 662
Direct Costs 663
Indirect Costs or Benefits and Intangibles 663
The Appropriate Rate of Discount 663
Cost-Effectiveness Analysis 664
Least-Cost Studies 665
Objective-Level Studies 665
Summary 666
Exercises 667
Case Exercise: Cost-Benefit Analysis 670
Case Exercise: Industrial Development Tax Relief and Incentives 672

APPENDICES
A The Time Value of Money A-1
B Tables B-1
C Differential Calculus Techniques in Management C-1
D Check Answers to Selected End-of-Chapter Exercises D-1
Glossary G-1
Index I-1
Notes

WEB APPENDICES
A Consumer Choice Using Indifference Curve Analysis
B International Parity Conditions
C Linear-Programming Applications
D Capacity Planning and Pricing Against a Low-Cost Competitor: A Case Study of Piedmont Airlines and People Express
E Pricing of Joint Products and Transfer Pricing
F Decisions Under Risk and Uncertainty
ORGANIZATION OF THE TEXT

The 12th edition has been thoroughly updated with more than 50 new applications. Although shortened to 672 pages, the book still covers all previous topics. Responding to user request, we have expanded the review of microeconomic fundamentals in Chapter 2, employing a wide-ranging discussion of the equilibrium price of crude oil and gasoline. A new Appendix 7B on the Production Economics of Renewable and Exhaustible Natural Resources is complemented by a new feature on environmental effects and sustainability. A compact fluorescent lightbulb symbol highlights these discussions spread throughout the text. Another special feature is the extensive treatment in Chapter 6 of managing global businesses, import-export trade, exchange rates, currency unions and free trade areas, trade policy, and an extensive new section on China.

There is more comprehensive material on applied game theory in Chapter 13, 13A, 15, 15A, and Web Appendix D than in any other managerial economics textbook, and a unique treatment of yield (revenue) management appears in Chapter 14 on pricing. Part V includes the hot topics of corporate governance, information economics, auction design, and the choice of organization form. Chapter 16 on economic regulation includes a broad discussion of cap and trade policy, pollution taxes, and the optimal abatement of externalities. By far the most distinctive feature of the book, however, is its 300 boxed examples, Managerial Challenges, What Went Right/What Went Wrong explorations of corporate practice, and mini-case examples on every other page demonstrating what each analytical concept is used for in practice. This list of concept applications is highlighted on the inside front and back covers.

STUDENT PREPARATION

The text is designed for use by upper-level undergraduates and first-year graduate students in business schools, departments of economics, and professional schools of management, public policy, and information science as well as in executive training programs. Students are presumed to have a background in the basic principles of microeconomics, although Chapter 2 offers an extensive review of those topics. No prior work in statistics is assumed; development of all the quantitative concepts employed is self-contained. The book makes occasional use of elementary concepts of differential calculus. In all cases where calculus is employed, at least one alternative approach, such as graphical, algebraic, or tabular analysis, is also presented. Spreadsheet applications have become so prominent in the practice of managerial economics that we now address optimization in that context.

PEDAGOGICAL FEATURES OF THE 12TH EDITION

The 12th edition of Managerial Economics makes extensive use of pedagogical aids to enhance individualized student learning. The key features of the book are:
1. **Managerial Challenges.** Each chapter opens with a Managerial Challenge (MC) illuminating a real-life problem faced by managers that is closely related to the topics covered in the chapter. Instructors can use the new discussion questions following each MC to “hook” student interest at the start of the class or in pre-class preparation assignments.

2. **What Went Right/What Went Wrong.** This feature allows students to relate business mistakes and triumphs to what they have just learned, and helps build that elusive goal of managerial insight.

3. **Extensive Use of Boxed Examples.** More than 300 real-world applications and examples derived from actual corporate practice are highlighted throughout the text. These applications help the analytical tools and concepts to come alive and thereby enhance student learning. They are listed on the inside front and back covers to highlight the prominence of this feature of the book.

4. **Environmental Effects Symbol.** A CFL bulb symbol highlights numerous passages throughout the book that address environmental effects and sustainability.

5. **Exercises.** Each chapter contains a large problem analysis set. Check answers to selected problems color-coded in blue type are provided in Appendix C at the end of the book. Problems that can be solved using Excel are highlighted with an Excel icon. The book’s Web site (www.cengage.com/economics/mcguigan) has answers to all the other textbook problems.

6. **Case Exercises.** Most chapters include mini-cases that extend the concepts and tools developed into a deep fact situation context of a real-world company.

7. **Chapter Glossaries.** In the margins of the text, new terms are defined as they are introduced. The placement of the glossary terms next to the location where the term is first used reinforces the importance of these new concepts and aids in later studying.

8. **International Perspectives.** Throughout the book, special International Perspectives sections are provided that illustrate the application of managerial economics concepts to an increasingly global economy. A globe symbol highlights this internationally-relevant material.

9. **Point-by-Point Summaries.** Each chapter ends with a detailed, point-by-point summary of important concepts from the chapter.

10. **Diversity of Presentation Approaches.** Important analytical concepts are presented in several different ways, including tabular analysis, graphical analysis, and algebraic analysis to individualize the learning process.

ANCILLARY MATERIALS

A complete set of ancillary materials is available to adopters to supplement the text, including the following:

Instructor’s Manual and Test Bank

Prepared by Richard D. Marcus, University of Wisconsin-Milwaukee, the instructor’s manual and test bank that accompany the book contain suggested answers to the end-of-chapter exercises and cases. The authors have taken great care to provide an error-free manual for instructors to use. The manual is available to instructors on the book’s Web site as well as on the Instructor’s Resource CD-ROM (IRCD). The test bank, containing a large collection of true-false, multiple-choice, and numerical problems, is available to adopters and is also available on the Web site in Word format, as well as on the IRCD.
ExamView
Simplifying the preparation of quizzes and exams, this easy-to-use test creation software includes all of the questions in the printed test bank and is compatible with Microsoft Windows. Instructors select questions by previewing them on the screen, choosing them randomly, or picking them by number. They can easily add or edit questions, instructions, and answers. Quizzes can also be created and administered online, whether over the Internet, a local area network (LAN), or a wide area network (WAN).

Textbook Support Web Site
When you adopt Managerial Economics: Applications, Strategy, and Tactics, 12e, you and your students will have access to a rich array of teaching and learning resources that you won’t find anywhere else. Located at www.cengage.com/economics/mcguigan, this outstanding site features additional Web Appendices including appendices on indifference curve analysis of consumer choice, international parity conditions, linear programming applications, a capacity planning entry deterrence case study, joint product pricing and transfer prices, and decision making under uncertainty. It also provides links to additional instructor and student resources including a “Talk-to-the-Author” link.

PowerPoint Presentation
Available on the product companion Web site, this comprehensive package provides an excellent lecture aid for instructors. Prepared by Richard D. Marcus at the University of Wisconsin-Milwaukee, these slides cover many of the most important topics from the text, and they can be customized by instructors to meet specific course needs.

CourseMate
Interested in a simple way to complement your text and course content with study and practice materials? Cengage Learning’s Economics CourseMate brings course concepts to life with interactive learning, study, and exam preparation tools that support the printed textbook. Watch student comprehension soar as your class works with the printed textbook and the textbook-specific Web site. Economics CourseMate goes beyond the book to deliver what you need! You and your students will have access to ABC/BBC videos, Cengage’s EconApps (such as EconNews and EconDebate), unique study guide content specific to the text, and much more.

ACKNOWLEDGMENTS
A number of reviewers, users, and colleagues have been particularly helpful in providing us with many worthwhile comments and suggestions at various stages in the development of this and earlier editions of the book. Included among these individuals are:

People who were especially helpful in the preparation of the 12th edition include Robert F. Brooker, Kristen E. Collett-Schmitt, Simon Medcalfe, Dr. Paul Stock, Shahab Dabirian, James Leady, Stephen Onyeiwu, and Karl W. Einoff. A special thanks to B. Ramy Elitzur of Tel Aviv University for suggesting the exercise on designing a managerial incentive contract.

We are also indebted to Richard D. Marcus, Bob Hebert, Sarah E. Harris, Wake Forest University, and the University of Louisville for the support they provided and owe thanks to our faculty colleagues for the encouragement and assistance provided on a continuing basis during the preparation of the manuscript. We wish to express our appreciation to the members of the South-Western/Cengage Learning staff—particularly, Betty Jung, Jana Lewis, Jennifer Thomas, Deepak Kumar, Steve Scoble, and Joe Sabatino—for their help in the preparation and promotion of this book. We are grateful to the Literary Executor of the late Sir Ronald A. Fisher, F.R.S.; to Dr. Frank Yates, F.R.S.; and to Longman Group, Ltd., London, for permission to reprint Table III from their book *Statistical Tables for Biological, Agricultural, and Medical Research* (6th ed., 1974).

James R. McGuigan
R. Charles Moyer
Frederick H. deB. Harris
About the Authors

James R. McGuigan
James R. McGuigan owns and operates his own numismatic investment firm. Prior to this business, he was Associate Professor of Finance and Business Economics in the School of Business Administration at Wayne State University. He also taught at the University of Pittsburgh and Point Park College. McGuigan received his undergraduate degree from Carnegie Mellon University. He earned an M.B.A. at the Graduate School of Business at the University of Chicago and his Ph.D. from the University of Pittsburgh. In addition to his interests in economics, he has coauthored books on financial management. His research articles on options have been published in the *Journal of Financial and Quantitative Analysis.*

R. Charles Moyer
R. Charles Moyer earned his B.A. in Economics from Howard University and his M.B.A. and Ph.D. in Finance and Managerial Economics from the University of Pittsburgh. Professor Moyer is Dean of the College of Business at the University of Louisville. He is Dean Emeritus and former holder of the GMAC Insurance Chair in Finance at the Babcock Graduate School of Management, Wake Forest University. Previously, he was Professor of Finance and Chairman of the Department of Finance at Texas Tech University. Professor Moyer also has taught at the University of Houston, Lehigh University, and the University of New Mexico, and spent a year at the Federal Reserve Bank of Cleveland. Professor Moyer has taught extensively abroad in Germany, France, and Russia. In addition to this text, Moyer has coauthored two other financial management texts. He has been published in many leading journals including *Financial Management, Journal of Financial and Quantitative Analysis, Journal of Finance, Financial Review, Journal of Financial Research, International Journal of Forecasting, Strategic Management Journal* and *Journal of Economics and Business.* Professor Moyer is a member of the Board of Directors of King Pharmaceuticals, Inc., Capital South Partners, and the Kentucky Seed Capital Fund.

Frederick H. deB. Harris
Frederick H. deB. Harris is the John B. McKinnon Professor at the Schools of Business, Wake Forest University. His specialties are pricing tactics and capacity planning. Professor Harris has taught integrative managerial economics core courses and B.A., B.S., M.S., M.B.A., and Ph.D. electives in business schools and economics departments in the United States, Europe, and Australia. He has won two school-wide Professor of the Year teaching awards and two Researcher of the Year awards. Other recognitions include Outstanding Faculty by *Inc.* magazine (1998), Most Popular Courses by Business Week Online 2000–2001, and Outstanding Faculty by *BusinessWeek’s Guide to the Best Business Schools,* 5th to 9th eds., 1997–2004.

Professor Harris has published widely in economics, marketing, operations, and finance journals including the *Review of Economics and Statistics, Journal of Financial and Quantitative Analysis, Journal of Operations Management, Journal of Industrial Economics,* and *Journal of Financial Markets.* From 1988–1993, Professor Harris served on the Board of Associate Editors of the *Journal of Industrial Economics.* His current research focuses on...
the application of capacity-constrained pricing models to specialist and electronic trading systems for stocks. His path-breaking work on price discovery has been frequently cited in leading academic journals, and several articles with practitioners have been published in the Journal of Trading. In addition, he often benchmarks the pricing, order processing, and capacity planning functions of large companies against state-of-the-art techniques in revenue management and writes about his findings in journals like Marketing Management and INFORMS’s Journal of Revenue and Pricing Management.
CHAPTER Preview A few fundamental microeconomic concepts provide cornerstones for all of the analysis in managerial economics. Four of the most important are demand and supply, marginal analysis, net present value, and the meaning and measurement of risk. We will first review how the determinants of demand and supply establish a market equilibrium price for gasoline, crude oil, and hybrid electric cars. Marginal analysis tools are central when a decision maker is seeking to optimize some objective, such as maximizing cost savings from changing a light bulb (e.g., from normal incandescent to compact fluorescent [CFL]). The net present value concept makes directly comparable alternative cash flows occurring at different points in time. In so doing, it provides the linkage between the timing and risk of a firm’s projected profits and the shareholder wealth-maximization objective. Risk-return analysis is important to an understanding of the many trade-offs that managers must consider as they introduce new products, expand capacity, or outsource overseas in order to increase expected profits at the risk of greater variation in profits.

Two Web appendices elaborate these topics for those who want to know more analytical details and seek exposure to additional application tools. Web Appendix 2A develops the relationship between marginal analysis and differential calculus. Web Appendix 2B shows how managers incorporate explicit probability information about the risk of various outcomes into individual choice models, decision trees, risk-adjusted discount rates, simulation analysis, and scenario planning.

MANAGERIAL CHALLENGE Why Charge $25 per Bag on Airline Flights?

In May 2008, American Airlines (AA) announced that it would immediately begin charging $25 per bag on all AA flights, not for extra luggage but for the first bag! Crude oil had doubled from $70 to $130 per barrel in the previous 12 months, and jet fuel prices had accelerated even faster. AA’s new baggage policy applied to all ticketed passengers except first class and business class. On top of incremental airline charges for sandwiches and snacks introduced the previous year, this new announcement stunned the travel public. Previously, only a few deep-discount U.S. carriers with very limited route structures such as People Express had charged separately for both food and baggage service. Since American Airlines and many other major carriers had belittled that policy as part of their overall marketing campaign against deep discounters, AA executives faced a dilemma.
DEMAND AND SUPPLY: A REVIEW

Demand and supply simultaneously determine equilibrium market price (P_{eq}). P_{eq} equates the desired rate of purchase Q_{d}/t with the planned rate of sale Q_{s}/t. Both concepts address intentions—that is, purchase intentions and supply intentions. Demand is therefore a potential concept often distinguished from the transactional event of “units sold.” In that sense, demand is more like the potential sales concept of customer traffic than it is the accounting receivables concept of revenue from completing an actual sale. Analogously, supply is more like scenario planning for operations than it is like actual...
production, distribution, and delivery. In addition, supply and demand are explicitly rates per unit time period (e.g., autos per week at a Chevy dealership and the aggregate purchase intentions of the households in the surrounding target market). Hence, P_{eq} is a market-clearing equilibrium concept, a price that equates the flow rates of intended purchase and planned sale.

When the order flow to buy at a given price (Q_d/t) in Figure 2.1 just balances against the order flow to sell at that price (Q_s/t), P_{eq} has emerged, but what ultimately determines this metric of “value” in a marketplace? Among the earliest answers can be found in the Aristotelian concept of intrinsic use value. Because diamonds secure marriage covenants and peace pacts between nations, they provide enormous use value and should therefore exhibit high market value. The problem with this theory of value taken alone arises when one considers cubic zirconium diamonds. No one other than a jewel merchant can distinguish the artificial cubic zirconium from the real thing, and therefore the intrinsic uses of both types are identical. Yet, cubic zirconium diamonds sell for many times less than natural stones of like grade and color. Why? One clue arose at the end of the Middle Ages, when Catholic monasteries produced beautiful hand-copied Bibles and sold them for huge sums (i.e., $22,000 in 2010 dollars) to other monasteries and the nobility. In 1455, Johannes Guttenberg offered a “mass produced” printed facsimile that could be put to exactly the same intrinsic use, and yet, the market value fell almost one-hundred-fold to $250 in 2010 dollars. Why?

Equilibrium market price results from the interaction of demanders and suppliers involved in an exchange. In addition to the use value demanders anticipate from a product, a supplier’s variable cost will also influence the market price observed. Ultimately, therefore, what minimum asking price suppliers require to cover their variable costs is just as pivotal in determining value in exchange as what maximum offer price buyers are willing to pay. Guttenberg Bibles and cubic zirconium diamonds exchange in a marketplace at lower “value” not because they are intrinsically less useful than prior copies of the Bible.
or natural stones but simply because the bargain struck between buyers and sellers of these products will likely be negotiated down to a level that just covers their lower variable cost plus a small profit. Otherwise, preexisting competitors are likely to win the business by asking less.

Even when the cost of production is nearly identical and intrinsic use value is nearly identical, equilibrium market prices can still differ markedly. One additional determinant of value helps to explain why. Market value depends upon the relative scarcity of resources. Hardwoods are scarce in Japan but plentiful in Sweden. Even though the cost of timber cutting and sawmill planing is the same in both locations, hardwood trees have scarcity value as raw material in Japan that they do not have in Sweden where they are plentiful. To take another example, whale oil for use in lamps throughout the nineteenth and early twentieth centuries stayed at a nearly constant price until whale species began to be harvested at rates beyond their sustainable yield. As whale resources became scarcer, the whalers who expended no additional cost on better equipment or longer voyages came home with less oil from reduced catches. With less raw material on the market, the input price of whale oil rose quickly. Consequently, despite unchanged other costs of production, the scarcer input led to a higher final product price. Similar results occur in the commodity market for coffee beans or orange juice when climate changes or insect infestations in the tropics cause crop projections to decline and scarcity value to rise.

Example

Discovery of Jojoba Bean Causes a Collapse of Whale Oil Lubricant Prices

Until the last decade of the twentieth century, the best-known lubricant for high-friction machinery with repeated temperature extremes like fan blades in aircraft jet engines, contact surfaces in metal cutting tools, and gearboxes in auto transmissions was a naturally occurring substance—sperm whale oil. In the early 1970s, the United States placed sperm whales on the endangered species list and banned their harvest. With the increasing scarcity of whales, the world market price of whale oil lubricant approached $200 per quart. Research and development for synthetic oil substitutes tried again and again but failed to find a replacement. Finally, a California scientist suggested the extract of the jojoba bean as a natural, environmentally friendly lubricant. The jojoba bean grows like a weed throughout the desert of the southwestern United States on wild trees that can be domesticated and cultivated to yield beans for up to 150 years.

After production ramped up from 150 tons in 1986 to 700 tons in 1995, solvent-extracted jojoba sold for $10 per quart. When tested in the laboratory, jojoba bean extract exhibits some lubrication properties that exceed those of whale oil (e.g., thermal stability over 400°F). Although 85 to 90 percent of jojoba bean output is used in the production of cosmetics, the confirmation of this plentiful substitute for high-friction lubricants caused a collapse in whale lubricant prices. Sperm whale lubricant has the same cost of production and the same use value as before the discovery of jojoba beans, but the scarcity value of the raw material input has declined tenfold. Consequently, a quart of sperm whale lubricant now sells for under $20 per quart.

1Based on “Jojoba Producers Form a Marketing Coop,” Chemical Marketing Reporter (January 8, 1995), p. 10.
The Diamond-Water Paradox and the Marginal Revolution

So equilibrium price in a marketplace is related to (1) intrinsic use value, (2) production cost, and (3) input scarcity. In addition, however, most products and services have more than one use and more than one method of production. And often these differences relate to how much or how often the product has already been consumed or produced. For example, the initial access to e-mail servers or the Internet for several hours per day is often essential to maintaining good communication with colleagues and business associates. Additional access makes it possible to employ search engines such as Google for information related to a work assignment. Still more access affords an opportunity to meet friends in a chat room. Finally, some households might purchase even more hours of access on the chance that a desire to surf the Web would arise unexpectedly. Each of these uses has its own distinct value along a continuum starting with necessities and ending with frivolous non-essentials. Accordingly, what a customer will pay for another hour of Internet access depends on the incremental hour in question. The greater the utilization already, the lower the use value remaining.

This concept of a marginal use value that declines as the rate of consumption increases leads to a powerful insight about consumer behavior. The question was posed: "Why should something as essential to human life as water sell for low market prices while something as frivolous as cosmetic diamonds sell for high market prices?" The initial answer was that water is inexpensive to produce in most parts of the world while diamonds require difficult search and discovery, expensive mining, and extensive transportation and security expenses. In other words, diamonds cost more than water, so minimum asking prices of suppliers dictate the higher market value observed for diamonds. However, recall that supply is only one of what Alfred Marshall famously called "two blades of the scissors" representing demand and supply. You can stab with one blade but you can’t cut paper, and using supply alone, you can’t fully explain equilibrium market price.

The diamond-water paradox was therefore restated more narrowly: "Why should consumers bid low offer prices for something as essential as water while bidding high offer prices for something as frivolous as diamonds?" The resolution of this narrower paradox hinges on distinguishing marginal use value (marginal utility) from total use value (total utility). Clearly, in some circumstances and locales, the use value of water is enormous. At an oasis in the desert, water does prevent you from thirsting to death. And even in the typical city, the first couple of ounces of some liquid serve this same function, but that’s the first couple of ounces. The next couple of dozen gallons per day remain at high use value for drinking, flushing indoor plumbing, cooking, body washing, and so forth. Thereafter, water is used for clothes washing, landscape watering, car washing, and sundry lesser purposes. Indeed, if one asks the typical American household (which consumes 80–100 gallons per person per day) to identify its least valuable use of water each day, the answer may come back truly frivolous—perhaps something like the water that runs down the sink drain while brushing teeth. In other words, the marginal use value of water in most developed countries is the water that saves the consumer the inconvenience of turning the water taps (on and off) twice rather than just once. And it is this marginal use value at the relevant margin, not the total utility across all uses, that determines a typical water consumer’s meager willingness to pay.

Marginal Utility and Incremental Cost Simultaneously Determine Equilibrium Market Price

Alfred Marshall had it right: demand and supply do simultaneously determine market equilibrium price. On the one hand, marginal utility determines the maximum offer
price consumers are willing to pay for each additional unit of consumption on the demand side of the market. On the other hand, variable cost at the margin (an incremental cost concept sometimes referred to as "marginal cost") determines the minimum asking price producers are willing to accept for each additional unit supplied. Water is both cheaper to produce and more frivolous than diamonds at the relevant margin, and hence water’s market equilibrium price is lower than that of diamonds. Figure 2.2 illustrates this concept of marginal use value for water varying from the absolutely essential first few ounces to the frivolous water left running while brushing one’s teeth.

At the same time, the marginal cost of producing water remains low throughout the 900-gallon range of a typical household’s consumption. In contrast, diamonds exhibit steeply rising marginal cost even at relatively small volume, and customers continue to employ cosmetic diamonds for highly valuable uses even out to the relevant margin (one to three carats) where typical households find their purchases occurring. Therefore, diamonds should trade for equilibrium market prices that exceed the equilibrium market price of water.

Individual and Market Demand Curves

We have seen that the market-clearing equilibrium price (\(P_{eq}\)) that sets the desired rate of purchase (\(Q_d/t\)) equal to the planned rate of sale (\(Q_s/t\)) is simultaneously both the maximum offer price demanders are willing to pay (the “offer”) and the minimum asking price sellers are willing to accept (the “ask”). But what determines the desired rate of purchase \(Q_d/t\) and planned rate of sales \(Q_s/t\)? The demand schedule (sometimes called the “demand curve”) is the simplest form of the demand relationship. It is merely a list of prices and corresponding quantities of a commodity that would be demanded by some individual or group of individuals at uniform prices. Table 2.1 shows the demand schedule for regular-size pizzas at a Pizza Hut restaurant. This demand schedule
indicates that if the price were $9.00, customers would purchase 60 per night. Note that the lower the price, the greater the quantity that will be demanded. This is the strongest form of the law of demand—if a product or service is income superior, a household will always purchase more as the relative price declines.

The Demand Function

The demand schedule (or curve) specifies the relationship between prices and quantity demanded, holding constant the influence of all other factors. A demand function specifies all these other factors that management will often consider, including the design and packaging of products, the amount and distribution of the firm’s advertising budget, the size of the sales force, promotional expenditures, the time period of adjustment for any price changes, and taxes or subsidies. As detailed in Table 2.2, the demand function for hybrid-electric or all-electric autos can be represented as

\[Q_D = f(P, P_S, P_C, Y, A, A_C, N, C_P, P_E, T_A, T/S, \ldots) \]

where \(Q_D \) = quantity demanded of (e.g., Toyota Prius or Chevy Volt)

\(P \) = price of the good or service (the auto)

\(P_S \) = price of substitute goods or services (e.g., the popular gasoline-powered Honda Accord or Chevy Malibu)

\(P_C \) = price of complementary goods or services (replacement batteries)

\(Y \) = income of consumers

\(A \) = advertising and promotion expenditures by Toyota, Honda, and General Motors (GM)

\(A_C \) = competitors’ advertising and promotion expenditures

\(N \) = size of the potential target market (demographic factors)

\(C_P \) = consumer tastes and preferences for a “greener” form of transportation

\(P_E \) = expected future price appreciation or depreciation of hybrid autos

\(T_A \) = purchase adjustment time period

\(T/S \) = taxes or subsidies on hybrid autos

The demand schedule or demand curve merely deals with the price-quantity relationship itself. Changes in the price (P) of the good or service will result only in movement along the demand curve, whereas changes in any of the other demand determinants in the demand function (\(P_S, P_C, Y, A, A_C, N, C_P, P_E \), and so on) shift the demand curve. This is illustrated graphically in Figure 2.3. The initial demand relationship is line \(DD' \). If the

<table>
<thead>
<tr>
<th>PRICE OF PIZZA ($/UNIT)</th>
<th>QUANTITY OF PIZZAS SOLD (UNITS PER TIME PERIOD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>50</td>
</tr>
<tr>
<td>9</td>
<td>60</td>
</tr>
<tr>
<td>8</td>
<td>70</td>
</tr>
<tr>
<td>7</td>
<td>80</td>
</tr>
<tr>
<td>6</td>
<td>90</td>
</tr>
<tr>
<td>5</td>
<td>100</td>
</tr>
</tbody>
</table>

TABLE 2.1 SIMPLIFIED DEMAND SCHEDULE: PIZZA HUT RESTAURANT
TABLE 2.2 PARTIAL LIST OF FACTORS AFFECTING DEMAND

<table>
<thead>
<tr>
<th>DEMAND FACTOR</th>
<th>EXPECTED EFFECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increase (decrease) in price of substitute goods(^a) ((P_s))</td>
<td>Increase (decrease) in demand ((Q_D))</td>
</tr>
<tr>
<td>Increase (decrease) in price of complementary goods(^b) ((P_c))</td>
<td>Decrease (increase) in (Q_D)</td>
</tr>
<tr>
<td>Increase (decrease) in consumer income levels(^c) ((Y))</td>
<td>Increase (decrease) in (Q_D)</td>
</tr>
<tr>
<td>Increase (decrease) in the amount of advertising and marketing expenditures ((A))</td>
<td>Increase (decrease) in (Q_D)</td>
</tr>
<tr>
<td>Increase (decrease) in level of advertising and marketing by competitors ((A_c))</td>
<td>Decrease (increase) in (Q_D)</td>
</tr>
<tr>
<td>Increase (decrease) in population ((N))</td>
<td>Increase (decrease) in (Q_D)</td>
</tr>
<tr>
<td>Increase (decrease) in consumer preferences for the good or service ((C_p))</td>
<td>Increase (decrease) in (Q_D)</td>
</tr>
<tr>
<td>Expected future price increases (decreases) for the good ((P_e))</td>
<td>Increase (decrease) in (Q_D)</td>
</tr>
<tr>
<td>Time period of adjustment increases (decreases) ((T_a))</td>
<td>Increase (decrease) in (Q_D)</td>
</tr>
<tr>
<td>Taxes (subsidies) on the good increase (decrease) ((T/S))</td>
<td>Decrease (increase) in (Q_D)</td>
</tr>
</tbody>
</table>

\(^a\)Two goods are substitutes if an increase (decrease) in the price of Good 1 results in an increase (decrease) in the quantity demanded of Good 2, holding other factors constant, such as the price of Good 2, other prices, income, and so on, or vice versa. For example, margarine may be viewed as a rather good substitute for butter. As the price of butter increases, more people will decrease their consumption of butter and increase their consumption of margarine.

\(^b\)Goods that are used in conjunction with each other, either in production or consumption, are called complementary goods. For example, DVDs are used in conjunction with DVD players. An increase in the price of DVD players would have the effect of decreasing the demand for DVDs, ceteris paribus. In other words, two goods are complementary if a decrease in the price of Good 1 results in an increase in the quantity demanded of Good 2, ceteris paribus. Similarly, two goods are complements if an increase in the price of Good 1 results in a decrease in the quantity demanded of Good 2.

\(^c\)The case of inferior goods—that is, those goods that are purchased in smaller total quantities as income levels rise—will be discussed in Chapter 3.
original price were \(P_1 \), quantity \(Q_1 \) would be demanded. If the price declined to \(P_2 \), the quantity demanded would increase to \(Q_2 \). If, however, changes occurred in the other determinants of demand, we would expect to have a shift in the entire demand curve. If, for example, a subsidy to hybrids were enacted, the new demand curve might become \(D_1D'_1 \). At any price, \(P_1 \), along \(D_1D'_1 \), a greater quantity, \(Q_3 \), will be demanded than at the same price before the subsidy on the original curve \(DD' \). Similarly, if the prices of substitute products such as the Honda Accord or Chevy Malibu were to decline sharply, the demand curve would shift downward and to the left. At any price, \(P_1 \), along the new curve \(D_2D'_2 \), a smaller quantity, \(Q_4 \), would be demanded than at the same price on either \(DD' \) or \(D_1D'_1 \).

In summary, movement along a demand curve is often referred to as a change in the quantity demanded, while holding constant the effects of factors other than price that determine demand. In contrast, a shift of the entire demand curve is often referred to as a change in demand and is always caused by some demand determinant other than price.

Import-Export Traded Goods

In addition to the previous determinants of demand, the demand for goods traded in foreign markets is also influenced by external factors such as exchange rate fluctuations. When Microsoft sells computer software overseas, it prefers to be paid in U.S. dollars. This is because a company like Microsoft incurs few offshore expenses beyond advertising and therefore cannot simply match payables and receivables in a foreign currency. To accept euros, Japanese yen, or Australian dollars in payment for software purchase orders would introduce an exchange rate risk exposure for which Microsoft would want to be compensated in the form of higher prices on its software. Consequently, the foreign exports of Microsoft are typically transacted in U.S. dollars and are therefore tied inextricably to the price of the dollar against other currencies. As the value of the dollar rises, offshore buyers must pay a larger amount of their own currency to obtain the U.S. dollars required to complete a purchase order for Microsoft’s software, and this decreases the export demand. Even in a large domestic market like the United States, companies often find that these export demand considerations are key determinants of their overall demand.

Example

Exchange Rate Impacts on Demand: Cummins Engine Company

Cummins Engine Company of Columbus, Indiana, is the largest independent manufacturer of new and replacement diesel engines for heavy trucks and for construction, mining, and agricultural machinery. Volvo and Daimler-Benz are their major competitors, and 53 percent of sales occur offshore. The Cummins and Daimler-Benz large diesel truck engines sell for approximately $40,000 and €35,000, respectively. In the 2002 recession, Cummins suffered substantial declines in cash flow. One reason was obvious: diesel replacement engines are not needed when fewer goods are being delivered, and therefore fewer diesels are wearing out.

In addition, however, between 1999 and 2002, the value of the U.S. dollar (€ per $) increased by 30 percent from €0.85/$ to €1.12/$. This meant that a $40,000 Cummins diesel engine that had sold for €34,000 in Munich in 1999 became €44,800, whereas the €35,000 Mercedes diesel alternative that had been selling for $41,176 in Detroit declined to $31,250 because of the stronger U.S. dollar. Cummins faced two unattractive options, either of which would reduce its cash flow. It could either cut its profit margins and maintain unit sales, or maintain margins but have both offshore and

(Continued)
domestic sales collapse. The company chose to cut margins and maintain sales. By 2005, the dollar’s value had eroded, returning to €.85/$, and Cummins’ sales performance markedly improved. In the interim, demand for Cummins engines was adversely affected by the temporary appreciation of the U.S. dollar.

In 2009, with the U.S. dollar at a still lower value of €.64/$, the Cummins Engine Co. could barely keep up with export demand since diesels to Europe were priced at €25,600 versus Mercedes, €32,000. Similarly, in Cleveland, St. Louis, and Atlanta, Cummins $40,000 diesels were up against $54,688 Mercedes substitutes. What a great time to be an American company competing against European manufacturers.

Individual and Market Supply Curves

What determines the planned rate of sale Q_s/t? Like the demand schedule, the supply schedule is a list of prices and corresponding quantities that an individual or group of sellers desires to sell at uniform prices, *holding constant the influence of all other factors*. A number of these other determinants of supply that management will often need to consider are detailed in Table 2.3. The *supply function* can be represented as

$$Q_S = f(P, P_I, P_{UI}, T, EE, F, RC, P_E, T/S \ldots)$$ \[2.2\]

where $Q_S =$ quantity supplied (e.g., of domestic autos)
$P =$ price of the autos
$P_I =$ price of inputs (e.g., sheet metal)
$P_{UI} =$ price of unused substitute inputs (e.g., fiberglass)
$T =$ technological improvements (e.g., robotic welding)
$EE =$ entry or exit of other auto sellers
$F =$ accidental supply interruptions from fires, floods, etc.
$RC =$ costs of regulatory compliance
$P_E =$ expected (future) changes in price
$T_A =$ adjustment time period
$T/S =$ taxes or subsidies

<table>
<thead>
<tr>
<th>SUPPLY FACTOR</th>
<th>EXPECTED EFFECT AT EVERY PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increase (decrease) in the price of inputs (P_I)</td>
<td>Decrease (increase) in supply</td>
</tr>
<tr>
<td>Increase (decrease) in the price of unused substitute inputs (P_{UI})</td>
<td>Decrease (increase) in supply</td>
</tr>
<tr>
<td>Technological improvements (T)</td>
<td>Increase in supply</td>
</tr>
<tr>
<td>Entry (Exit) of other sellers (EE)</td>
<td>Increase (decrease) in supply</td>
</tr>
<tr>
<td>Supply disruptions (F)</td>
<td>Decrease in supply</td>
</tr>
<tr>
<td>Increase (decrease) in regulatory costs (RC)</td>
<td>Decrease (increase) in supply</td>
</tr>
<tr>
<td>Expected future price increases (decreases) (P_E)</td>
<td>Decrease (increase) in supply</td>
</tr>
<tr>
<td>Time period of adjustment lengthens (shortens) (T_A)</td>
<td>Increase (decrease) in supply</td>
</tr>
<tr>
<td>Taxes (subsidies) (T/S)</td>
<td>Decrease (increase) in supply</td>
</tr>
</tbody>
</table>
Again, changes in the price \((P)\) of the good or service will result only in movement along the given supply curve, whereas changes in any of the other independent variables \((P_S, P_D, Y, A, A_C, N, C_P, P_E, \text{ and so on})\) in the function shift the supply curve. As with demand, a movement along a supply curve is referred to as a change in the quantity supplied, while holding constant other determinants of supply. A shift of the entire supply curve is often referred to as a change in supply and is always caused by some supply determinant other than price.

Equilibrium Market Price of Gasoline

In April–July 2008, Americans woke up to a new reality about gasoline that markedly affected their driving habits as well as U.S. public policy. The price of a gallon of regular octane gasoline skyrocketed from $3.00 per gallon to $4.10 (see Figure 2.4). The previous summer, when gas prices had hovered around $3 per gallon, Americans had cut back only slightly on non-essential driving.

In the summer of 2008, with regular gasoline at $4.10 per gallon, not only summer driving vacations but urban commuting itself changed in extraordinary ways. Overall, customer demand by the typical two-person urban household shrank from 16 gallons per week to 11.5 gallons. As a result, for the first time in U.S. history, gasoline expenditure by U.S. households declined despite a rising price at the pump—that is, 16 gallons/week at $3 in 2007 (Q3) = $48 > 11.5 gallons per week at $4.10 in 2008 (Q3) = $47.15.

Several determinants of demand and supply were identified as possible explanations for the spike in gasoline’s equilibrium market price. First, much was written about the fact that no new refinery had been built in the United States in more than 30 years, suggesting that refinery capacity shortages or pipeline bottlenecks might be responsible. Declining capacity does shift the supply curve in Figure 2.2 to the left, which would imply a higher equilibrium price. But no refinery closings or pipeline disruptions could be identified that summer. And the U.S. Department of Energy found refineries command only $0.36 per gallon of the final product price of gasoline for cost recovery plus profit and

Example

NAFTA and the Reduced Labor Costs of Ford Assembly Plants in Detroit

The North American Free Trade Agreement (NAFTA) made it possible to buy subassemblies like axles and engine blocks from Mexican suppliers like Cifunsa, SA, without paying any import tariff when the parts arrived in the United States. Since United Auto Worker (UAW) labor in Detroit auto assembly plants also makes axle subassemblies, the Mexican labor input can be thought about as an unused substitute input from the point of view of Ford Motor Company. NAFTA in effect lowered the input cost of substitute inputs for Ford. This means fewer employers would pursue labor contracts with UAW labor in Detroit and instead shift some of their production south across the Mexican border. Less demand implies lower equilibrium wages would be offered and accepted by UAW assembly line labor. Hence, the indirect effect of NAFTA was a reduction in the input costs for UAW labor that the Ford Motor Co. did utilize. As usual, lower input cost implies a shift of the supply curve down and to the right, an increase in supply.
could not therefore be responsible for the $1.10 increase in the equilibrium price between July 2007 and July 2008.

Second, retail gas station owners were accused of gouging the driving public. Higher markups at retail also would shift the supply curve for gasoline back to the left, raising the equilibrium market price. But again, retail markup and indeed all gasoline marketing were found to add only $0.28 per gallon to the $4.10 price, much less than could be responsible for the $1.10 run-up in gasoline’s equilibrium market price. Third, excise taxes on gasoline (earmarked for road building and maintenance) are levied by both the federal and state governments. Gasoline taxes constitute $0.41 per gallon on average across the United States. Any new excise taxes would have shifted the supply curve leftward, resulting in a higher equilibrium market price for gasoline. President George Bush’s Council of Economic Advisors in 2007 did explore levying an additional $1 per gallon tax on gasoline to reduce the dependence of the United States on foreign oil, but no tax increase was ever initiated. So what was responsible for the upward spike in gasoline prices?

As we have seen, the variables in the demand and supply functions in Equations 2.1 and 2.2 determining equilibrium market price may be grouped into three broad sets of factors affecting use value, cost of production, and resource scarcity. Since crude oil inputs account for $2.96 of the $4.10 final product price of gasoline, resource scarcity was a likely candidate to explain the increase in gasoline prices from $3 to $4.10. Higher crude oil input prices shift the supply curve leftward, leading to higher final product prices for gasoline. Figure 2.5 shows that the previous three times crude oil input prices shot up, supply disruptions in the crude oil input market were involved (i.e., during the first Gulf War in Kuwait in 1991, during an especially effective era for the OPEC cartel 1999–2001, and during the Iraq War in 2004).

In contrast, the crude oil input price rise from $40 to $80 per barrel in 2006–2007 reflected demand-side increased usage especially by India and China. India and China are only 9 percent of the 85 million barrels per day (mbd) worldwide crude oil market but these two countries have been growing very quickly. A 2 to 3 percent additional

2Two additional factors are speculation and government intervention in the form of taxes, subsidies, and regulations.
demand can significantly raise equilibrium prices for crude oil resources because at any point in time there is a very thin inventory (8–10 days supply) working its way through the distribution network from wells to pumps to terminals to tankers to refineries. By late 2007, crude oil input prices were rising beyond $80 per barrel. As gasoline headed toward $4.10 per gallon in the United States, $9.16 per gallon in Germany, and $8.80 per gallon in Great Britain, Western drivers substantially cut back consumption. Brazil approached $6.40 per gallon and pursued a successful energy independence campaign focused on sugar cane-based ethanol plants.

Was the $80 price in late 2007 the highest price ever in the crude oil input market prior to that time? The answer is “no.” In 1981, the equilibrium crude oil price reached $36 per barrel. Using the U.S. consumer price index (CPI), since crude oil transactions worldwide are denominated in U.S. dollars, cumulative price increases between 1981 and 2007 total 228.8 percent, so $36 \times \text{a 2.288 inflation-adjustment multiplier equals}$ 82 in 2007, and $80/2.288$ equals 35 in 1981. Consequently, the 80 crude oil price in late 2007 was in fact lower than the inflation-adjusted 36 crude price in 1981 at the height of the influence of the OPEC II oil cartel. However, in early 2008, the equilibrium price of crude continued to spike upward.

When the crude price climbed above $100, large numbers of speculators acquired long positions in the crude oil futures market betting on a further price rise. Speculative

demand (supply) is always motivated by the anticipation of equilibrium market prices being higher (lower) tomorrow. Those who “go long” and buy futures contracts to take delivery at prices agreed on today are betting the price will go up, and those who “sell short” and write futures contracts promising to deliver in the future at prices agreed on today are betting the other way. The net long direction of speculative trading in the first half of 2008 added to the growing market demand from India and China and drove the crude oil equilibrium price still higher, eventually reaching $146 per barrel in July 2008.

Faced with $4.10 per gallon gasoline, as ExxonMobil and Shell sought to recover their extraordinary input costs for crude, American consumers decided to vacate their SUVs, join carpools, and ride the buses and trains to work. Urban mass transit system ridership shot up 20 percent in a matter of months. Other Americans purchased fuel-efficient hybrids like the Toyota Prius. Still others mobilized behind T. Boone Pickens’s plan to convert the federal trucking fleet to natural gas. Fearing an onslaught of feasible substitutes like hybrid electric cars and natural gas-powered trucks, the Saudis ramped up crude oil production from their average 8.5 mbd 1990–2006 all the way to 10.5 and 10.9 mbd in 2007 and 2008 (see Figure 2.6).

FIGURE 2.6 Saudi Arabia Crude Oil Production

Source: U.S. Energy Information Administration.
With U.S. demand for gasoline declining and capacity to extract and refine expanding, the equilibrium price of crude finally turned and began to decline. The late 2008 crude oil price reversal was caused by a combination of increasing supply fundamentals (shifting the supply curve to the right), slowing demand growth, and a speculative expectation that in the near term crude prices would be lower (not higher). Consequently, the supply of crude oil (and especially of highly leveraged crude oil futures contracts) mushroomed. Angola doubled production capacity to 2.1 mbd, and Saudi capacity grew to 12.5 mbd. Saudi Arabia and Kuwait also broke ground on two giant new refining facilities.

Example

Speculation Sends Crude Oil Input Price on a Roller-Coaster Ride at ExxonMobil and Shell

With reversed expectations of lower crude prices in the near term, the speculative bubble in crude oil quickly burst. Despite 5 percent higher market demand over the last four months of 2008 (again primarily from China and India), the equilibrium price of crude oil plummeted more than $100 a barrel from $146 in September 2008 to a low of $40 by January 2009 (see Figure 2.7). By 2009 (Q3), the crude price stood again at $75 per barrel, and gasoline was selling for $2.74 per gallon. Although North American import demand for crude oil has been flat in recent years, OPEC members clearly believe that the spectacular 22 percent demand growth from Asian developing countries in 2000–2008 will continue. Over a two-year period, rising Asian demand, massive capacity expansions, a worldwide financial boom, then collapse, and speculative buying followed by speculative selling had taken oil companies and gasoline buyers on quite a roller-coaster ride.

FIGURE 2.7 Crude Oil Price, West Texas Intermediate

Source: Thomson Datasteam.
MARGINAL ANALYSIS

Marginal analysis is one of the most useful concepts in microeconomics. Resource-allocation decisions typically are expressed in terms of the marginal equilibrium conditions that must be satisfied to attain an optimal solution. The familiar profit-maximization rule for the firm of setting output at the point where “marginal cost equals marginal revenue” is one such example. Long-term investment decisions (capital expenditures) also are made using marginal analysis decision rules. Only if the expected return from an investment project (that is, the marginal return to the firm) exceeds the cost of funds that must be acquired to finance the project (the marginal cost of capital), should the project be undertaken. Following this important marginal decision rule leads to the maximization of shareholder wealth.

More generally, a change in the level of an economic activity is desirable if the marginal benefits exceed the marginal (that is, the incremental) costs. If we define net marginal return as the difference between marginal benefits and marginal costs, then an equivalent optimality condition is that the level of the activity should be increased to the point where the net marginal return is zero.

In summary, marginal analysis instructs decision makers to determine the additional (marginal) costs and additional (marginal) benefits associated with a proposed action. Only if the marginal benefits exceed the marginal costs (that is, if net marginal benefits are positive) should the action be taken.

Total, Marginal, and Average Relationships

Revenue, cost, profit, and many other economic relationships can be presented using tabular, graphic, and algebraic frameworks. Let us first use a tabular presentation. Suppose
Marginal Analysis and Capital Budgeting Decisions: Sara Lee Corporation

The capital budgeting decision problem facing a typical firm, such as Sara Lee Corporation, can be used to illustrate the application of marginal analysis decision rules. Sara Lee has the following schedule of potential investment projects (all assumed to be of equal risk) available to it:

<table>
<thead>
<tr>
<th>PROJECT</th>
<th>INVESTMENT REQUIRED ($ MILLION)</th>
<th>EXPECTED RATE OF RETURN</th>
<th>CUMULATIVE INVESTMENT ($ MILLION)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>$25.0</td>
<td>27.0%</td>
<td>$ 25.0</td>
</tr>
<tr>
<td>B</td>
<td>15.0</td>
<td>24.0</td>
<td>40.0</td>
</tr>
<tr>
<td>C</td>
<td>40.0</td>
<td>21.0</td>
<td>80.0</td>
</tr>
<tr>
<td>D</td>
<td>35.0</td>
<td>18.0</td>
<td>115.0</td>
</tr>
<tr>
<td>E</td>
<td>12.0</td>
<td>15.0</td>
<td>127.0</td>
</tr>
<tr>
<td>F</td>
<td>20.0</td>
<td>14.0</td>
<td>147.0</td>
</tr>
<tr>
<td>G</td>
<td>18.0</td>
<td>13.0</td>
<td>165.0</td>
</tr>
<tr>
<td>H</td>
<td>13.0</td>
<td>11.0</td>
<td>178.0</td>
</tr>
<tr>
<td>I</td>
<td>7.0</td>
<td>8.0</td>
<td>185.0</td>
</tr>
</tbody>
</table>

Sara Lee has estimated the cost of acquiring the funds needed to finance these investment projects as follows:

<table>
<thead>
<tr>
<th>BLOCK OF FUNDS ($ MILLION)</th>
<th>COST OF CAPITAL</th>
<th>CUMULATIVE FUNDS RAISED ($ MILLION)</th>
</tr>
</thead>
<tbody>
<tr>
<td>First $50.0</td>
<td>10.0%</td>
<td>$ 50.0</td>
</tr>
<tr>
<td>Next 25.0</td>
<td>10.5</td>
<td>75.0</td>
</tr>
<tr>
<td>Next 40.0</td>
<td>11.0</td>
<td>115.0</td>
</tr>
<tr>
<td>Next 50.0</td>
<td>12.2</td>
<td>165.0</td>
</tr>
<tr>
<td>Next 20.0</td>
<td>14.5</td>
<td>185.0</td>
</tr>
</tbody>
</table>

The expected rate of return on the projects listed above can be thought of as the marginal (or incremental) return available to Sara Lee as it undertakes each additional investment project. Similarly, the cost-of-capital schedule may be thought of as the incremental cost of acquiring the needed funds. Following the marginal analysis rules means that Sara Lee should invest in additional projects as long as the expected rate of return on the project exceeds the marginal cost of capital funds needed to finance the project.

Project A, which offers an expected return of 27 percent and requires an outlay of $25 million, is acceptable because the marginal return exceeds the marginal cost of capital (10.0 percent for the first $50 million of funds raised by Sara Lee). In fact, an examination of the tables indicates that projects A through G all meet the marginal analysis test because the marginal return from each of these projects exceeds the marginal cost of capital funds needed to finance these projects. In contrast, projects H and I should not be undertaken because they offer returns of 11 percent and 8 percent, respectively, compared with a marginal cost of capital of 14.5 percent for the $20 million in funds needed to finance those projects.
that the total profit \(\pi_T \) of a firm is a function of the number of units of output produced \(Q \), as shown in columns 1 and 2 of Table 2.4.

Marginal profit, which represents the change in total profit resulting from a one-unit increase in output, is shown in column 3 of the table. (A \(\Delta \) is used to represent a “change” in some variable.) The marginal profit \(\Delta \pi(Q) \) of any level of output \(Q \) is calculated by taking the difference between the total profit at this level \(\pi_T(Q) \) and at one unit below this level \(\pi_T(Q - 1) \).[^3] In comparing the marginal and total profit functions, we

[^3]: Web Appendix A expands upon the idea that the total profit function can be maximized by identifying the level of activity at which the marginal profit function goes to zero.
note that for increasing output levels, the marginal profit values remain positive as long
as the total profit function is increasing. Only when the total profit function begins
decreasing—that is, at $Q = 10$ units—does the marginal profit become negative. The
average profit function values $\pi_A(Q)$, shown in column 4 of Table 2.4, are obtained by
dividing the total profit figure $\pi_T(Q)$ by the output level Q. In comparing the marginal
and the average profit function values, we see that the average profit function $\pi_A(Q)$
is increasing as long as the marginal profit is greater than the average profit—that is, up to
$Q = 7$ units. Beyond an output level of $Q = 7$ units, the marginal profit is less than the
average profit and the average profit function values are decreasing.

By examining the total profit function $\pi_T(Q)$ in Table 2.4, we see that profit is maxi-
mized at an output level of $Q = 9$ units. Given that the objective is to maximize total
profit, then the optimal output decision would be to produce and sell 9 units. If the mar-
ginal analysis decision rule discussed earlier in this section is used, the same (optimal)
decision is obtained. Applying the rule to this problem, the firm would expand produc-
tion as long as the net marginal return—that is, marginal revenue minus marginal cost
(marginal profit)—is positive. From column 3 of Table 2.4, we can see that the marginal
profit is positive for output levels up to $Q = 9$. Therefore, the marginal profit decision
rule would indicate that 9 units should be produced—the same decision that was ob-
tained from the total profit function.

The relationships among the total, marginal, and average profit functions and the
optimal output decision also can be represented graphically. A set of continuous profit
functions, analogous to those presented in Table 2.4 for discrete integer values of out-
put (Q), is shown in Figure 2.8. At the break-even output level Q_1, both total profits
and average profits are zero. The marginal profit function, which equals the slope of
the total profit function, takes its maximum value at an output of Q_2 units. This
point corresponds to the inflection point. Below the inflection point, total profits are
increasing at an increasing rate, and hence marginal profits are increasing. Above the
inflection point, up to an output level Q_4, total profits are increasing at a decreasing
rate, and consequently marginal profits are decreasing. The average profit function,
which represents the slope of a straight line drawn from the origin 0 to each point on

<table>
<thead>
<tr>
<th>TABLE 2.4 TOTAL, MARGINAL, AND AVERAGE PROFIT RELATIONSHIPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) NUMBER OF UNITS OF OUTPUT PER UNIT OF TIME Q</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
</tbody>
</table>
the total profit function, takes on its maximum value at an output of \(Q_3 \) units. The average profit necessarily equals the marginal profit at this point. This follows because the slope of the OA line, which defines the average profit, is also equal to the slope of the total profit function at point A, which defines the marginal profit. Finally, total profit is maximized at an output of \(Q_4 \) units where marginal profit equals 0. Beyond \(Q_4 \) the total profit function is decreasing, and consequently the marginal profit function takes on negative values.

THE NET PRESENT VALUE CONCEPT

When costs and benefits occur at approximately the same time, the marginal decision rule (proceed with the action if marginal benefit exceeds marginal cost) applies. But, many economic decisions require that costs be incurred immediately to capture a stream of benefits over several future time periods. In these cases, the *net present value* (NPV) rule replaces the marginal decision rule and provides appropriate guidance for longer-term decision makers. The NPV of an investment represents the contribution of that investment to the value of the firm and, accordingly, to shareholder wealth maximization.
Determining the Net Present Value of an Investment

To understand the NPV rule, consider the following situation. You are responsible for investing $1 million to support the retirement of several family members. Your financial advisor has suggested that you use these funds to purchase a piece of land near a proposed new highway interchange. A trustworthy state road commissioner is certain that the interchange will be built and that in one year the value of this land will increase to $1.2 million. Hence, you believe initially that this is a riskless investment. At the end of one year you plan to sell the land. You are being asked to invest $1 million today in the anticipation of receiving $1.2 million a year from today, or a profit of $200,000. You wonder whether this profit represents a sufficient return on your investment.

You feel it is important to recognize that a return of $1.2 million received one year from today must be worth less than $1.2 million today because you could invest your $1 million today to earn interest over the coming year. Therefore, to compare a dollar received in the future with a dollar in hand today, it is necessary to multiply the future dollar by a discount factor that reflects the alternative investment opportunities that are available.

Instead of investing $1 million in the land venture, you are aware that you could also invest in a one-year U.S. government bond that currently offers a return of 3 percent. The 3 percent return represents the return (the opportunity cost) forgone by investing in the land project. The 3 percent rate also can be thought of as the compensation to an investor who agrees to postpone receiving a cash return for one year. The discount factor, also called a present value interest factor (PVIF), is equal to

\[PVIF = \frac{1}{1 + i} \]

where \(i \) is the compensation for postponing receipt of a cash return for one year. The present value \((PV_0) \) of an amount received one year in the future \((FV_1) \) is equal to that amount times the discount factor, or

\[PV_0 = FV_1 \times (PVIF) \] \[2.3\]

In the case of the land project, the present value of the promised $1.2 million expected to be received in one year is equal to

\[PV_0 = \$1.2 \text{ million} \left(\frac{1}{1 + 0.05} \right) = \$1,142,857 \]

If you invested $1,165,049 today to earn 3 percent for the coming year, you would have $1.2 million at the end of the year. You are clearly better off with the proposed land investment (assuming that it really is riskless like the U.S. government bond investment). How much better off are you?

The answer to this question is at the heart of NPV calculations. The land investment project is worth $1,165,049 today to an investor who demands a 3 percent return on this type of investment. You, however, have been able to acquire this investment for only $1,000,000. Thus, your wealth has increased by undertaking this investment by $165,049 ($1,165,049 present value of the projected investment opportunity payoffs minus the required initial investment of $1,000,000). The NPV of this investment is $165,049. In general, the NPV of an investment is equal to

\[NPV = \text{Present value of future returns} - \text{Initial outlay} \] \[2.4\]

This example was simplified by assuming that the returns from the investment were received exactly one year from the date of the initial outlay. If the payoff from the land
investment had been not one but two years away, the PVIF would have been \(1/(1.03)^2 = 0.942596\), and the NPV would have been \(1.2 \text{ million} \cdot (0.942596) - 1.0 \text{ million} = \$131,115\). The NPV rule can be generalized to cover returns received over any number of future time periods with projected growth or decay and terminal values as salvage or disposal costs. In Appendix A at the end of the book, the present value concept is developed in more detail so that it can be applied in these more complex investment settings.
Sources of Positive Net Present Value Projects

What causes some projects to have a positive NPV and others to have a negative NPV? When product and factor markets are other than perfectly competitive, it is possible for a firm to earn above-normal profits (economic rents) that result in positive net present value projects. The reasons why these above-normal profits may be available arise from conditions that define each type of product and factor market and distinguish it from a perfectly competitive market. These reasons include the following barriers to entry and other factors:

1. Buyer preferences for established brand names
2. Ownership or control of favored distribution systems (such as exclusive auto dealerships or airline hubs)
3. Patent control of superior product designs or production techniques
4. Exclusive ownership of superior natural resource deposits
5. Inability of new firms to acquire necessary factors of production (management, labor, equipment)
6. Superior access to financial resources at lower costs (economies of scale in attracting capital)
7. Economies of large-scale production and distribution arising from
 a. Capital-intensive production processes
 b. High initial start-up costs

These factors can permit a firm to identify positive net present value projects for internal investment. If the barriers to entry are sufficiently high (such as a patent on key technology) so as to prevent any new competition, or if the start-up period for competitive ventures is sufficiently long, then it is possible that a project may have a positive net present value. However, in assessing the viability of such a project, the manager or analyst must consider the likely period of time when above-normal returns can be earned before new competitors emerge and force cash flows back to a more normal level. It is generally unrealistic to expect to be able to earn above-normal returns over the entire life of an investment project.

Risk and the NPV Rule

The previous land investment example assumed that the investment was riskless. Therefore, the rate of return used to compute the discount factor and the net present value was the riskless rate of return available on a U.S. government bond having a one-year maturity. What if you do not believe that the construction of the new interchange is a
certainty, or you are not confident about the value of the land in one year? To compensate for the perceived risk of this investment, you decide that you require a 15 percent rate of return on your investment. Using a 15 percent required rate of return in calculating the discount factor, the present value of the expected $1.2 million sales price of the land is $1,043,478 ($1.2 million times \(\frac{1}{1.15} \)). Thus, the NPV of this investment declines to $43,478. The increase in the perceived risk of the investment results in a dramatic $121,571 decline from $165,049 in the NPV on a $1 million investment.

A primary problem facing managers is the difficulty of evaluating the risk associated with investments and then translating that risk into a discount rate that reflects an adequate level of risk compensation. In the next section of this chapter, we discuss the risk concept and the factors that affect investment risk and influence the required rate of return on an investment.

MEANING AND MEASUREMENT OF RISK

Risk implies a chance for some unfavorable outcome to occur—for example, the *possibility that actual cash flows will be less than* the expected outcome. When a range of potential outcomes is associated with a decision and the decision maker is able to assign probabilities to each of these possible outcomes, risk is said to exist. A decision is said to be *risk free* if the cash flow outcomes are known with certainty. A good example of a risk-free investment is U.S. Treasury securities. There is virtually no chance that the Treasury will fail to redeem these securities at maturity or that the Treasury will default on any interest payments owed. In contrast, US Airways bonds constitute a *risky* investment because it is possible that US Airways will default on one or more interest payments and will lack sufficient funds at maturity to redeem the bonds at face value. In summary, risk refers to the potential variability of outcomes from a decision. The more variable these outcomes are, the greater the risk.

Probability Distributions

The **probability** that a particular outcome will occur is defined as the relative frequency or *percentage chance* of its occurrence. Probabilities may be either objectively or subjectively determined. An objective determination is based on past outcomes of similar events, whereas a subjective determination is merely an opinion made by an individual about the likelihood that a given event will occur. In the case of decisions that are frequently repeated, such as the drilling of developmental oil wells in an established oil field, reasonably good objective estimates can be made about the success of a new well. In contrast, for totally new decisions or one-of-a-kind investments, subjective estimates about the likelihood of various outcomes are necessary. The fact that many probability estimates in business are at least partially subjective does not diminish their usefulness.

Using either objective or subjective methods, the decision maker can develop a probability distribution for the possible outcomes. Table 2.6 shows the probability distributions of the annual net cash flows (NCF) from two investments.

<table>
<thead>
<tr>
<th>Table 2.6</th>
<th>PROBABILITY DISTRIBUTIONS OF THE ANNUAL NET CASH FLOWS (NCF) FROM TWO INVESTMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>INVESTMENT I</td>
<td>INVESTMENT II</td>
</tr>
<tr>
<td>POSSIBLE NCF</td>
<td>PROBABILITY</td>
</tr>
<tr>
<td>$200</td>
<td>0.2</td>
</tr>
<tr>
<td>300</td>
<td>0.6</td>
</tr>
<tr>
<td>400</td>
<td>0.2</td>
</tr>
<tr>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>
distribution of net cash flows for two sample investments. The lowest estimated annual net cash flow (NCF) for each investment—$200 for Investment I and $100 for Investment II—represents pessimistic forecasts about the investments’ performance; the middle values—$300 and $300—could be considered normal performance levels; and the highest values—$400 and $500—are optimistic estimates.

Example

Probability Distributions and Risk: US Airways Bonds

Consider an investor who is contemplating the purchase of US Airways bonds. That investor might assign the probabilities associated with the three possible outcomes from this investment, as shown in Table 2.7. These probabilities are interpreted to mean that a 30 percent chance exists that the bonds will not be in default over their life and will be redeemed at maturity, a 65 percent chance of interest default during the life of the bonds, and a 5 percent chance that the bonds will not be redeemed at maturity. In this example, no other outcomes are deemed possible.

<table>
<thead>
<tr>
<th>OUTCOME</th>
<th>PROBABILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>No default, bonds redeemed at maturity</td>
<td>0.30</td>
</tr>
<tr>
<td>Default on interest for one or more periods</td>
<td>0.65</td>
</tr>
<tr>
<td>No interest default, but bonds not redeemed at maturity</td>
<td>0.05</td>
</tr>
<tr>
<td>1.00</td>
<td></td>
</tr>
</tbody>
</table>

Expected Values

From this information, the expected value of each decision alternative can be calculated. The expected value is defined as the weighted average of the possible outcomes. It is the value that is expected to occur on average if the decision (such as an investment) were repeated a large number of times.

Algebraically, the expected value may be defined as

$$ \mathbb{E} = \sum_{j=1}^{n} r_j p_j $$

where \(\mathbb{E} \) is the expected value; \(r_j \) is the outcome for the \(j \)th case, where there are \(n \) possible outcomes; and \(p_j \) is the probability that the \(j \)th outcome will occur. The expected cash flows for Investments I and II are calculated in Table 2.8 using Equation 2.5. In this example, both investments have expected values of annual net cash flows equaling $300.

<table>
<thead>
<tr>
<th>TABLE 2.8 COMPUTATION OF THE EXPECTED RETURNS FROM TWO INVESTMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>INVESTMENT I</td>
</tr>
<tr>
<td>(r_j)</td>
</tr>
<tr>
<td>$200</td>
</tr>
<tr>
<td>300</td>
</tr>
<tr>
<td>400</td>
</tr>
<tr>
<td>Expected value: (\mathbb{E}_I = $300)</td>
</tr>
</tbody>
</table>
Standard Deviation: An Absolute Measure of Risk

The standard deviation is a statistical measure of the dispersion of a variable about its mean. It is defined as the square root of the weighted average squared deviations of individual outcomes from the mean:

\[
\sigma = \sqrt{\sum_{j=1}^{n} (r_j - \bar{r})^2 p_j}
\]

where \(\sigma \) is the standard deviation.

The standard deviation can be used to measure the variability of a decision alternative. As such, it gives an indication of the risk involved in the alternative. The larger the standard deviation, the more variable the possible outcomes and the riskier the decision alternative. A standard deviation of zero indicates no variability and thus no risk.

Table 2.9 shows the calculation of the standard deviations for Investments I and II. These calculations show that Investment II appears to be riskier than Investment I because the expected cash flows from Investment II are more variable.

Normal Probability Distribution

The possible outcomes from most investment decisions are much more numerous than in Table 2.6 but their effects can be estimated by assuming a continuous probability distribution. Assuming a normal probability distribution is often correct or nearly correct, and it greatly simplifies the analysis. The normal probability distribution is characterized by a symmetrical, bell-like curve. A table of the standard normal probability function (Table 1 in Appendix B at the end of this book) can be used to compute the probability of occurrence of any particular outcome. From this table, for example, it is apparent that the actual outcome should be between plus and minus 1

| TABLE 2.9 COMPUTATION OF THE STANDARD DEVIATIONS FOR TWO INVESTMENTS |
|---|---|---|---|---|---|---|
| \(j \) | \(r_j \) | \(\bar{r} \) | \(r_j - \bar{r} \) | \((r_j - \bar{r})^2 \) | \(p_j \) | \((r_j - \bar{r})^2 p_j \) |
| Investment I | 1 | $200 | $300 | $100 | $10,000 | 0.2 | $2,000 |
| | 2 | 300 | 300 | 0 | 0 | 0.6 | 0 |
| | 3 | 400 | 300 | 100 | 10,000 | 0.2 | 2,000 |
| | \[\sum_{j=1}^{3} (r_j - \bar{r})^2 p_j = 4,000 \] \[\sigma = \sqrt{\sum_{j=1}^{n} (r_j - \bar{r})^2 p_j} = \sqrt{4,000} = 63.25 \] |
| Investment II | 1 | $100 | $300 | $200 | $40,000 | 0.2 | $8,000 |
| | 2 | 300 | 300 | 0 | 0 | 0.6 | 0 |
| | 3 | 500 | 300 | 200 | 40,000 | 0.2 | 8,000 |
| | \[\sum_{j=1}^{3} (r_j - \bar{r})^2 p_j = 16,000 \] \[\sigma = \sqrt{\sum_{j=1}^{n} (r_j - \bar{r})^2 p_j} = \sqrt{16,000} = 126.49 \] |
standard deviation from the expected value 68.26 percent of the time, between plus and minus 2 standard deviations 95.44 percent of the time, and between plus and minus 3 standard deviations 99.74 percent of the time (see Figure 2.9). So a "3 sigma event" occurs less than 1 percent of the time with a relative frequency 0.0026 (i.e., 1.0 − 0.9974), and a "9 sigma event" occurs almost never, with a relative frequency less than 0.0001. Nevertheless, such extraordinary events can and do happen (see following box on LTCM).

The number of standard deviations z that a particular value of r is from the mean μ can be computed as

$$z = \frac{r - \mu}{\sigma} \quad [2.7]$$

Table 1 in Appendix B and Equation 2.5 can be used to compute the probability of an annual net cash flow for Investment I being less than some value r—for example, $205. First, the number of standard deviations that $205 is from the mean must be calculated. Substituting the mean and the standard deviation from Tables 2.8 and 2.9 into Equation 2.7 yields

$$z = \frac{205 - 300}{63.25} = -1.50$$

In other words, the annual cash flow value of $205 is 1.5 standard deviations below the mean. Reading from the 1.5 row in Table 1 gives a value of 0.0668, or 6.68 percent.

6For example, Table 1 indicates a probability of 0.1587 of a value occurring that is greater than $+1\sigma$ from the mean and a probability of 0.1587 of a value occurring that is less than -1σ from the mean. Hence the probability of a value between $+1\sigma$ and -1σ is 68.26 percent—that is, 1.00 − (2 × 0.1587).
Thus, a 6.68 percent probability exists that Investment I will have annual net cash flows less than $205. Conversely, there is a 93.32 percent probability \((1 - 0.0668) \) that the investment will have a cash flow greater than $205.

Coefficient of Variation: A Relative Measure of Risk

The standard deviation is an appropriate measure of risk when the decision alternatives being compared are approximately equal in size (that is, have similar expected values of the outcomes) and the outcomes are estimated to have symmetrical probability distributions. Because the standard deviation is an absolute measure of variability,
However, it is generally not suitable for comparing alternatives of differing size. In these cases the **coefficient of variation** provides a better measure of risk.

The coefficient of variation (ν) considers relative variation and thus is well suited for use when a comparison is being made between two unequally sized decision alternatives. It is defined as the ratio of the standard deviation σ to the expected value μ,

$$\nu = \frac{\sigma}{\mu}$$ \[2.8\]

Example: Relative Risk Measurement: Arrow Tool Company

Arrow Tool Company is considering two investments, T and S. Investment T has expected annual net cash flows of $100,000 and a standard deviation of $20,000, whereas Investment S has expected annual net cash flows of $4,000 and a $2,000 standard deviation. Intuition tells us that Investment T is less risky because its relative variation is smaller. As the coefficient of variation increases, so does the relative risk of the decision alternative. The coefficients of variation for Investments T and S are computed as

Investment T:

$$\nu = \frac{\sigma}{\mu} = \frac{20,000}{100,000} = 0.20$$

Investment S:

$$\nu = \frac{\sigma}{\mu} = \frac{2,000}{4,000} = 0.5$$

Cash flows of Investment S have a larger coefficient of variation (0.50) than do cash flows of Investment T (0.20); therefore, even though the standard deviation is smaller, Investment S is the more risky of the two alternatives.

RISK AND REQUIRED RETURN

The relationship between risk and required return on an investment can be defined as

$$\text{Required return} = \text{Risk-free return} + \text{Risk premium} \quad [2.9]$$

The risk-free rate of return refers to the return available on an investment with no risk of default. For debt securities, no default risk means that promised interest and principal payments are guaranteed to be made. The best example of risk-free debt securities are short-term government securities, such as U.S. Treasury bills. The buyer of a U.S. government debt security always is assured of receiving the promised principal and interest payments because the U.S. government always can print more money. The risk-free return on T-bills equals the real rate of interest plus the expected rate of inflation. The second term in Equation 2.9 is a potential "reward" that an investor can expect to receive
Risk-Return Trade-Offs in Stocks, Bonds, Farmland, and Diamonds

Investors require higher rates of return on debt securities based primarily on their default risk. Bond-rating agencies, such as Moody’s, Standard and Poor’s, and Fitch, provide evaluations of the default risk of many corporate bonds. Moody’s, for example, rates bonds on a 9-point scale from Aaa through C, where Aaa-rated bonds have the lowest expected default risk. As can be seen in Table 2.10, the yields on bonds increase as the risk of default increases, again reflecting the positive relationship between risk and required returns.

<table>
<thead>
<tr>
<th>TABLE 2.10 RELATIONSHIP BETWEEN RISK AND REQUIRED RETURNS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEBT SECURITY</td>
</tr>
<tr>
<td>U.S. Treasury bill</td>
</tr>
<tr>
<td>U.S. Treasury bonds (25 year +)</td>
</tr>
<tr>
<td>Aaa-rated corporate bonds</td>
</tr>
<tr>
<td>Aa-rated bonds</td>
</tr>
<tr>
<td>A-rated bonds</td>
</tr>
<tr>
<td>Baa-rated corporate bonds</td>
</tr>
<tr>
<td>Other investments</td>
</tr>
<tr>
<td>Diamonds</td>
</tr>
<tr>
<td>Farmland</td>
</tr>
<tr>
<td>Stocks</td>
</tr>
<tr>
<td>All U.S. stocks</td>
</tr>
<tr>
<td>Biotech stocks</td>
</tr>
<tr>
<td>Emerging market stocks</td>
</tr>
</tbody>
</table>

Table 2.10 also shows investment in diamonds has returned 3 percent whereas farmland has returned 6.5 percent, U.S. stocks have returned 10 percent, biotech stocks have returned 12.6 percent, and emerging market stocks have returned 16 percent compounded annually from 1970 to 2010. These compound annual returns mirror the return variance of diamonds (lowest), farmland, U.S. stocks, biotech stocks, and emerging market stocks (highest).

from providing capital for a risky investment. This risk premium may arise for any number of reasons. The borrower firm may default on its contractual repayment obligations (a default risk premium). The investor may have little seniority in presenting claims against a bankrupt borrower (a seniority risk premium). The investor may be unable to sell his security interest (a liquidity risk premium as we saw in the case of LTCM), or debt repayment may occur early (a maturity risk premium). Finally, the return the investor receives may simply be highly volatile, exceeding expectations during one period and plummeting below expectations during the next period. Investors generally are considered to be risk averse; that is, they expect, on average, to be compensated for any and all of these risks they assume when making an investment.
SUMMARY

- Demand and supply simultaneously determine equilibrium market price. The determinants of demand (supply) other than price shift the demand (supply) curve. A change in price alone leads to a change in quantity demanded (supplied) without any shift in demand (supply).
- The offer price demanders are willing to pay is determined by the marginal use value of the purchase being considered. The asking price suppliers are willing to accept is determined by the variable cost of the product or service being supplied.
- The equilibrium price of gasoline fluctuates primarily because of spikes and collapses in crude oil input prices caused at various times by supply disruptions and gluts, increasing demand in developing countries, and speculation.
- Changes in price result in movement along the demand curve, whereas changes in any of the other variables in the demand function result in shifts of the entire demand curve. Thus “changes in quantity demanded along” a particular demand curve result from price changes. In contrast, when one speaks of “changes in demand,” one is referring to shifts in the entire demand curve.
- Some of the factors that cause a shift in the entire demand curve are changes in the income level of consumers, the price of substitute and complementary goods, the level of advertising, competitors’ advertising expenditures, population, consumer preferences, time period of adjustment, taxes or subsidies, and price expectations.
- The marginal analysis concept requires that a decision maker determine the additional (marginal) costs and additional (marginal) benefits associated with a proposed action. If the marginal benefits exceed the marginal costs (that is, if the net marginal benefits are positive), the action should be taken.
- The net present value of an investment is equal to the present value of expected future returns (cash flows) minus the initial outlay.
- The net present value of an investment equals the contribution of that investment to the value of the firm and, accordingly, to the wealth of shareholders. The net present value of an investment depends on the return required by investors (the firm), which, in turn, is a function of the perceived risk of the investment.
- Risk refers to the potential variability of outcomes from a decision alternative. It can be measured either by the standard deviation (an absolute measure of risk) or coefficient of variation (a relative measure of risk).
- A positive relationship exists between risk and required rates of return. Investments involving greater risks must offer higher expected returns.

Exercises

1. For each of the determinants of demand in Equation 2.1, identify an example illustrating the effect on the demand for hybrid gasoline-electric vehicles such as the Toyota Prius. Then do the same for each of the determinants of supply in Equation 2.2. In each instance, would equilibrium market price increase or decrease? Consider substitutes such as plug-in hybrids, the Nissan Leaf and Chevy Volt, and complements such as gasoline and lithium ion laptop computer batteries.
2. Gasoline prices above $3 per gallon have affected what Enterprise Rental Car Co. can charge for various models of rental cars. SUVs are $37 with one-day return and subcompacts are $41 with one-day return. Why would the equilibrium price of SUVs be lower than the equilibrium price of subcompacts?
3. The Ajax Corporation has the following set of projects available to it:

<table>
<thead>
<tr>
<th>PROJECT*</th>
<th>INVESTMENT REQUIRED ($ MILLION)</th>
<th>EXPECTED RATE OF RETURN</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>500</td>
<td>23.0%</td>
</tr>
<tr>
<td>B</td>
<td>75</td>
<td>18.0</td>
</tr>
<tr>
<td>C</td>
<td>50</td>
<td>21.0</td>
</tr>
<tr>
<td>D</td>
<td>125</td>
<td>16.0</td>
</tr>
<tr>
<td>E</td>
<td>300</td>
<td>14.0</td>
</tr>
<tr>
<td>F</td>
<td>150</td>
<td>13.0</td>
</tr>
<tr>
<td>G</td>
<td>250</td>
<td>19.0</td>
</tr>
</tbody>
</table>

*Note: All projects have equal risk.

Ajax can raise funds with the following marginal costs:

- First $250 million: 14.0%
- Next 250 million: 15.5%
- Next 100 million: 16.0%
- Next 250 million: 16.5%
- Next 200 million: 18.0%
- Next 200 million: 21.0%

Use the marginal cost and marginal revenue concepts developed in this chapter to derive an optimal capital budget for Ajax.

4. The demand for MICHTEC’s products is related to the state of the economy. If the economy is expanding next year (an above-normal growth in GNP), the company expects sales to be $90 million. If there is a recession next year (a decline in GNP), sales are expected to be $75 million. If next year is normal (a moderate growth in GNP), sales are expected to be $85 million. MICHTEC’s economists have estimated the chances that the economy will be either expanding, normal, or in a recession next year at 0.2, 0.5, and 0.3, respectively.
 a. Compute expected annual sales.
 b. Compute the standard deviation of annual sales.
 c. Compute the coefficient of variation of annual sales.

5. Two investments have the following expected returns (net present values) and standard deviation of returns:

<table>
<thead>
<tr>
<th>PROJECT</th>
<th>EXPECTED RETURNS</th>
<th>STANDARD DEVIATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>$50,000</td>
<td>$40,000</td>
</tr>
<tr>
<td>B</td>
<td>$250,000</td>
<td>$125,000</td>
</tr>
</tbody>
</table>

Which one is riskier? Why?

6. The manager of the aerospace division of General Aeronautics has estimated the price it can charge for providing satellite launch services to commercial firms. Her most optimistic estimate (a price not expected to be exceeded more than 10 percent of the time) is $2 million. Her most pessimistic estimate (a lower price than this one is not expected more than 10 percent of the time) is $1 million. The expected value estimate is $1.5 million. The price distribution is believed to be approximately normal.
a. What is the expected price?
b. What is the standard deviation of the launch price?
c. What is the probability of receiving a price less than $1.2 million?

REVENUE MANAGEMENT AT AMERICAN AIRLINES

Airlines face highly cyclical demand; American reported profitability in the strong expansion of 2006–2007 but massive losses in the severe recession of 2008–2009. Demand also fluctuates day to day. One of the ways American copes with random demand is through marginal analysis using revenue management techniques. Revenue or “yield” management (RM) is an integrated demand-management, order-booking, and capacity-planning process.

To win orders in a service industry without slashing prices requires that companies create perceived value for segmented classes of customers. Business travelers on airlines, for example, will pay substantial premiums for last-minute responsiveness to their flight change requests. Other business travelers demand exceptional delivery reliability and on-time performance. In contrast, most vacation excursion travelers want commodity-like service at rock-bottom prices. Although only 15–20 percent of most airlines’ seats are in the business segment, 65–75 percent of the profit contribution on a typical flight comes from this group.

The management problem is that airline capacity must be planned and allocated well in advance of customer arrivals, often before demand is fully known, yet unsold inventory perishes at the moment of departure. This same issue faces hospitals, consulting firms, TV stations, and printing businesses, all of whom must acquire and schedule capacity before the demands for elective surgeries, a crisis management team, TV ads, or the next week’s press run are fully known.

One approach to minimizing unsold inventory and yet capturing all last-minute high-profit business is to auction off capacity to the highest bidder. The auction for free-wheeling electricity works just that way: power companies bid at quarter ‘til the hour for excess supplies that other utilities agree to deliver on the hour. However, in airlines, prices cannot be adjusted quickly as the moment of departure approaches. Instead, revenue managers employ large historical databases to predict segmented customer demand in light of current arrivals on the reservation system. They then analyze the expected marginal profit from holding in reserve another seat in business class in anticipation of additional “last-minute” demand and compare that seat by seat to the alternative expected marginal profit from accepting one more advance reservation request from a discount traveler.

Suppose on the 9:00 A.M. Dallas to Chicago flight next Monday, 63 of American’s 170 seats have been “protected” for first class, business class, and full coach fares but only 50 have been sold; the remaining 107 seats have been authorized for sale at a discount. Three days before departure, another advance reservation request arrives in the discount class, which is presently full. Should American reallocate capacity and

take on the new discount passenger? The answer depends on the marginal profit from each class and the predicted probability of excess demand (beyond 63 seats) next Monday in the business classes.

If the $721 full coach fare has a $500 marginal profit and the $155 discount fare has a $100 marginal profit, the seat in question should not be reallocated from business to discount customers unless the probability of “stocking out” in business is less than 0.20 (accounting for the likely incidence of cancellations and no-shows). Therefore, if the probability of stocking out is 0.25, the expected marginal profit from holding an empty seat for another potential business customer is $125, whereas the marginal profit from selling that seat to the discount customer is only $100 with certainty. Even a pay-in-advance no-refund seat request from the discount class should be refused. Every company has some viable orders that should be refused because additional capacity held in reserve for the anticipated arrival of higher profit customers is not “idle capacity” but rather a predictable revenue opportunity waiting to happen.

In this chapter, we developed the marginal analysis approach used in solving American’s seat allocation decision problem. The Appendix to Chapter 14 discusses further the application of revenue management to baseball, theatre ticketing, and hotels.

Questions

1. Make a list of some of the issues that will need to be resolved if American Airlines decides to routinely charge different prices to customers in the same class of service.

2. Would you expect these revenue management techniques of charging differential prices based on the target customers’ willingness to pay for change order responsiveness, delivery reliability, schedule frequency, and so forth to be more effective in the trucking industry, the outpatient health care industry, or the hotel industry? Why or why not?

3. Sometimes when reservation requests by deep discount travelers are refused, demanders take their business elsewhere; they “balk.” At other times, such demanders negotiate and can be “sold up” to higher fare service like United’s Economy Plus. If United experiences fewer customers balking when reservation requests for the cheapest seats are refused, should they allocate preexisting capacity to protect fewer seats (or more) for late-arriving full-fare passengers?
CHAPTER PREVIEW This chapter examines some of the techniques that have been developed for estimating the cost functions of production processes in actual firms. In the short run, knowledge of the firm’s cost function is essential when deciding whether to accept an additional order, perhaps at less than “full cost”; whether to schedule overtime for workers; or whether to temporarily suspend operations but not close the plant. In the long run, knowledge of cost-function relationships will determine the capital investments to make, the production technology to adopt, the markets to enter, and the new products to introduce. The first part of the chapter examines various techniques for empirically estimating short-run and long-run cost functions. The second part of the chapter deals with break-even and contribution analysis—an application of cost theory that is useful in examining the profitability of a firm’s operations.

MANAGERIAL CHALLENGE How Exactly Have Computerization and Information Technology Lowered Costs at Chevron, Timken, and Merck?

Computerization and robotics have made output per worker higher and therefore lowered unit labor cost when it comes to processing insurance claims, redeeming coupons, or screening job resumes. Personal computers have decreased manifold the time and talent required to perform routine work done previously with paper forms and time-consuming repetitive human tasks. However, not every business uses large numbers of PCs. How have computerization and information technology raised productivity and lowered cost so widely across other industries?

One key seems to be enhanced analytical and research and development (R&D) capability provided by computers and information technology (IT) systems. Chevron Corporation once spent anywhere from $2 to $4 million each to drill 10 to 12 exploratory wells before finding oil. Today, Chevron finds oil once in every five wells. The reason for the cost savings is a new technology that allows Chevron to display three-dimensional graphs of the likely oil and gas deposits in potential oil fields. New fast parallel processors allow more calculation-intensive 3-D simulation modeling. Using only seismic data as inputs, Chevron can now model how the oil and gas deposits will shift and flow as a known field is pumped out. This allows a much more accurate location of secondary wells. As a result, overall production costs declined 16 percent industry-wide since 1991.

Timken, a $4-billion ball-bearing manufacturer, has also used digital 3D modeling to reconfigure production processes and implement small production runs of high-profit-margin products. Timken’s newest facility in North Carolina is a so-called flexible manufacturing system where order taking, limited customization of design, production scheduling, and the actual factory itself are all IT enabled and networked. Networked machine tools make it possible to build to order against precise specifications deliverable within
ESTIMATING COST FUNCTIONS

To make optimal pricing and production decisions, the firm must have knowledge of the shape and characteristics of its short-run cost function. A cost function is a schedule, graph, or mathematical relationship showing the total, average, or marginal cost of producing various quantities of output. To decide whether to accept or refuse an order offered at some particular price, the firm must identify exactly what variable cost and direct fixed costs the order entails. A capability to estimate the short-run cost function is therefore crucial. In contrast, the long-run cost function is associated with the longer-term planning period in which all the inputs to the production process are variable and no restrictions are placed on the amount of an input that can be employed in the production process. Consequently, all costs, including indirect fixed costs such as headquarters facility costs, are avoidable and therefore relevant to cost estimates.

Discussion Questions

- Name a business that you believe has experienced declining costs attributable to computerization. Were variable costs reduced? What fixed costs increase was involved? Does it seem clear that average total cost went down? Explain.

MANAGERIAL CHALLENGE Continued

four hours rather than stockpile enormous inventories of subassemblies or insist that customers wait six to eight weeks, as was the practice before IT. Nissan recently estimated that $3,600 in the final price of an auto is tied up in inventory expense. The build-to-order system could save the auto industry as much as $50 billion per year out of its $80 billion inventory cost.

Pharmaceutical R&D has experienced a similar benefit from computerization. Drug industry basic research always starts with biochemical or biogenetic modeling of the disease mechanism. In the past, once a mechanism for Hodgkin’s disease or pancreatic cancer became well understood, researchers at Merck or Pfizer experimented on known active compounds one by one in time-consuming chemical trials. Successful therapies emerged only after human trials on the promising compounds showed efficacy with few side effects. Total time to introduction of a new pharmaceutical was often longer than a decade and entailed $1.5 billion in investments.

Today, the first stage of the basic research process remains much the same, but the second stage of dribbling chemicals into a petri dish has ended. Instead, machines controlled and automated by microchips perform thousands of reactions at once and tally the results. Human researchers then take the most likely reagents and perform much more promising experiments that culminate in human trials. The total time to discovery has been cut by more than two-thirds, and all attendant costs have declined sharply.
Issues in Cost Definition and Measurement

Recall that economic cost is represented by the value of opportunities forgone, whereas accounting cost is measured by the outlays that are incurred. Some companies, such as Deep Creek Mining, record the cost of their own output (the crude oil, coal, or gas) shipped downstream to their refining-and-processing operations as expenses at the world market price on the day of shipment (i.e., at their opportunity cost). Other companies account for these same resources as their out-of-pocket expenses. If extraction costs of the company being studied are low (e.g., with Kentucky coal or West Texas intermediate crude or Persian Gulf oil), these two cost methods will diverge because the equilibrium market price is always determined by the considerably higher cost of the marginal producer (e.g., an oil platform in the North Sea).

Similar problems arise in measuring variable costs (i.e., costs that vary with output). Some companies employ only direct accounting costs, including materials, supplies, direct labor costs, and any direct fixed costs avoidable by refusing the batch order in question. Direct costs exclude all overhead and any other fixed cost that must be allocated (so-called indirect fixed costs). For batch decisions about whether to accept or refuse an order for a proposed charter air flight, a special production run, or a customer’s proposed change order, these estimates of variable plus direct fixed costs are needed. For other questions, such as offering a customized design, however, some indirect accounting cost for the IT system that allows customized design would be an appropriate inclusion in the cost data.

Several other cost measurement issues arise with depreciation. Conceptually, depreciation can be divided into two components: time depreciation represents the decline in value of an asset associated with the passage of time, and use depreciation represents the decline in value associated with use. For example, annual body style changes in the automobile industry or technical progress in speed and memory of personal computers renders products and production processes obsolete. Note that such time depreciation is completely independent of the rate of output at which the asset is actually operated. Because only use depreciation varies with the rate of output, only use depreciation is relevant in determining the shape of the cost-output relationship. However, accounting data on depreciation seldom break out use depreciation costs separately. Instead, the depreciation of the value of an asset over its life cycle is usually determined by arbitrary tax regulations. Finally, capital asset values (and their associated depreciation costs) are often stated in terms of historical costs rather than in terms of replacement costs. In periods of rapidly increasing price levels, this approach will tend to understate true economic depreciation costs. These limitations need to be kept in mind when interpreting the cost-output relationship for a firm with numerous capital assets, such as an airline.

Controlling for Other Variables

In addition to being a function of the output level of the firm, cost is a function of other factors, such as output mix, the length of production runs, employee absenteeism and turnover, production methods, input costs, and managerial efficiency.

To isolate the cost-output relationship itself, one must control for these other influences by:

- **Deflating or detrending the cost data.** Whenever wage rates or raw material prices change significantly over the period of analysis, one can deflate the cost data to reflect these changes in factor prices. Provided suitable price indices are available or
can be constructed, costs incurred at different points in time can be restated as inflation-adjusted real costs.\footnote{Two assumptions are implicit in this approach: No substitution takes place between the inputs as prices change, and changes in the output level have no influence on the prices of the inputs. For more automated plants that incorporate only maintenance personnel, plant engineers, and material supplies, these assumptions fit the reality of the production process quite well.}

- **Using multiple regression analysis.** Suppose a firm believes that costs should decline gradually over time as a result of innovative worker suggestions. One way to incorporate this effect into the cost equation would be to include a time trend t as an additional explanatory variable:

$$C = f(Q, t)$$ \[9.1\]

Other possible control variables include the number of product lines, the number of customer segments, and the number of distribution channels.

The Form of the Empirical Cost-Output Relationship

The total cost function in the short run (SRTC), as hypothesized in economic theory, is an S-shaped curve that can be represented by a cubic relationship:

$$\text{SRTC} = a + bQ + cQ^2 + dQ^3$$ \[9.2\]

The familiar U-shaped marginal and average cost functions then can be derived from this relationship. The associated marginal cost function is

$$MC = \frac{d(\text{SRTC})}{dQ} = b + 2cQ + 3dQ^2$$ \[9.3\]

The average total cost function is

$$\text{ATC} = \frac{\text{SRTC}}{Q} = \frac{a}{Q} + b + cQ + dQ^2$$ \[9.4\]

The cubic total cost function and its associated marginal and average total cost functions are shown in Figure 9.1(a). If the results of a regression analysis indicate that the cubic term (Q^3) is not statistically significant, then short-run total cost can be represented by a quadratic relationship:

$$\text{SRTC} = a + bQ + cQ^2$$ \[9.5\]

as illustrated in Figure 9.1(b). In this quadratic case, total costs increase at an increasing rate throughout the typical operating range of output levels. The associated marginal and average cost functions are

$$MC = \frac{d(\text{SRTC})}{dQ} = b + 2cQ$$ \[9.6\]

$$\text{ATC} = \frac{\text{SRTC}}{Q} = \frac{a}{Q} + b + cQ$$ \[9.7\]

As can be seen from Equation 9.6, this quadratic total cost relationship implies that marginal costs increase linearly as the output level is increased.
FIGURE 9.1 Polynomial Cost-Output Relationships

- **Cubic total cost function**
 \[SRTC = a + bQ + cQ^2 + dQ^3 \]
 \[MC = b + 2cQ + 3dQ^2 \]
 \[ATC = \frac{a}{Q} + b + cQ + dQ^2 \]

- **Quadratic total cost function**
 \[SRTC = a + bQ + cQ^2 \]
 \[MC = b + 2cQ \]
 \[ATC = \frac{a}{Q} + b + cQ \]

WHAT WENT RIGHT • WHAT WENT WRONG

Boeing: The Rising Marginal Cost of Wide-Bodies

Boeing and Airbus provide all the wide-bodied jets the world needs. Boeing 747s, 767s, and 777s typically have a 70 percent share of the worldwide market, but Airbus accepted a majority of the new orders in 1994–1995 and doubled its output rate, especially on smaller planes, from 126 to 232 planes per year. Some analysts think Boeing should have given up even more of the order flow. Why?

One reason is that until recently, incremental orders at Boeing necessitated redrawing and duplicating the thousands of engineering diagrams that determine how 200,000 employees assemble any particular customer’s plane. Rather than doing mass customization from common platforms, Boeing assembles one plane at a time with new drawings for each $150 million wide-body ordered. Eventually, incremental variable costs must rise as designers and shop floors get congested with new instructions and diagrams.

With backorders running to almost 1,000 planes companywide in the mid-1990s, Boeing boosted production from 180 to 560 commercial jets per year. At the final assembly plant for Boeing wide-bodies in Everett, Washington, just north of Seattle, throughput was increased from 15 planes per month to 21 planes per month (i.e., by 40 percent). To increase production rates, Boeing needed to split bottlenecked assembly stations into parallel processes, which entailed the hiring of additional assembly workers and massive overtime. Boeing also increased the production rate of final assembly by contracting out more subassemblies. Splitting bottlenecked assembly stations or contracting out subassemblies substantially increases Boeing’s variable costs.

In the late 1990s, wide-body prices did not rise because of intense competitive pressure from Airbus, but Boeing’s marginal costs certainly did. As a result, for a while in the late 1990s, every wide-body plane delivered had a price less than its marginal cost (i.e., a negative gross profit margin). Of course, eventually such orders must be refused. In 2000, Boeing did slow the production throughput rate at Everett back to 15 wide-bodies per month in order to return to profitability. Today, the well-equipped 747-400 aircraft earns as much as $45 million in operating profits above its variable cost.

But rising, not constant, marginal cost is characteristic of many manufacturing environments. On the other hand, some information services companies, such as IBM Global Services or network-based software companies such as Microsoft, may at times experience declining marginal costs.

Statistical Estimation of Short-Run Cost Functions

Short-run cost functions have been estimated for firms in a large number of different industries—for example, food processing, furniture, railways, gas, coal, electricity, hosiery, steel, and cement.

Statistical Estimation of Long-Run Cost Functions

Long-run costs can be estimated over a substantial period of time in a single plant (time-series data) or with multiple plants operating at different rates of output (cross-sectional data). The use of cross-sectional data assumes that each firm is using its fixed plant and equipment and variable inputs to accomplish min \(LRAC \) production for that plant size along the envelop of \(SRAC \) curves we studied in Chapter 8.

The use of time-series data assumes that input prices, the production technology, and the products offered for sale remain unchanged. Both methods, therefore, require heroic assumptions, but cross-sectional data are more prevalent in estimating long-run cost functions.

Example

Short-Run Cost Function for Multi-Product Food Processing

In a study of a British food processing firm, Johnston constructed individual cost functions for 14 different products and an overall cost function for the firm. Weekly data for nine months were obtained on the physical production of each type of product and total direct costs of each product (subdivided into the four categories of materials, labor, packing, and freight). Indirect costs (such as salaries, indirect labor, factory charges, and laboratory expenses) remained fairly constant over the time period studied and were excluded from the analysis. A price index for each category of direct costs for each product was obtained from government sources and used to deflate all four sets of input costs, yielding a weekly deflated direct cost for each product. For the individual products, output was measured by physical production (quantity). For the firm as a whole, an index of aggregate output was constructed by weighting the quantities of each product by its selling price and summing over all products produced each period.

For the 14 different products and for the overall firm, the linear cost function gave an excellent fit between direct cost and output. Therefore, Johnston concluded that total direct costs were a linear function of output, and marginal costs were constant over the observed ranges of output.

Determining the Optimal Scale of an Operation

The size at which a company should attempt to establish its operations depends on the extent of the scale economies and the extent of the market. Some firms can operate at minimum unit cost using a small scale. Consider a licensed street vendor of leather coats. Each additional sale entails variable costs for the coat, a few minutes of direct labor effort to answer potential customers’ questions, and some small allocated cost associated with the step-van or other vehicle where the inventory is stored and hauled from one street sale location to another. Ninety-nine percent of the operating cost is the variable cost of an additional leather coat per additional sale. Long-run average cost will be essentially flat, constant at approximately the wholesale cost of a leather coat. As a result, in street vending, a small-scale operation will be just as efficient as a large-scale operation.

Example

Short-Run Cost Functions: Electricity Generation

Another study by Johnston of the costs of electric power generation in Great Britain developed short-run cost functions for a sample of 17 different firms from annual cost-output data on each firm. To satisfy the basic conditions underlying the short-run cost function, only those firms whose capital equipment remained constant in size over the period were included in the sample. The output variable was measured in kilowatt-hours (kWh). The cost variable was defined as the “working costs of generation” and included: (1) fuel; (2) salaries and wages; and (3) repairs and maintenance, oil, water, and stores. This definition of cost does not correspond exactly with variable costs as long as maintenance is scheduled so as to just offset wear and tear from use. Each of the three cost categories was deflated using an appropriate price index. A cubic polynomial function with an additional linear time trend variable was fitted to each of 17 sets of cost-output observations.

The results of this study did not support the existence of a nonlinear cubic or quadratic cost function. The cubic term, Q^3, was not statistically significant in any of the regressions, and the quadratic term, Q^2, was statistically significant in only 5 of the 17 cost equations. A typical linear total cost function is given by

$$C = 18.3 + 0.889Q - 0.639T$$

where $C =$ variable costs of generation, $Q =$ annual output (millions of kilowatt-hours), and $T =$ time (years). The equation “explained” 97.4 percent of the variation in the cost variable.

The results of the two Johnston studies are similar to those found in many other cost studies—namely, that short-run total costs tend to increase linearly over the ranges of output for which cost-output data are available. In other words, short-run average costs tend to decline and marginal costs tend to be constant over the “typical” or “normal” operating range of the firm. At higher rates of output, we would expect to see rising marginal cost, but, of course, this circumstance is exactly what firms try to avoid. Recall Boeing’s experience in producing too many 747s per month.

5Ibid., pp. 44–63.
Example

Long-Run Cost Functions: Electricity Generation\(^6\)

In a cross-sectional study of U.S. electric utility companies, Christensen and Greene used a logarithmic model to test for the presence of economies and diseconomies of scale. The long-run average cost curve \((LRAC)\) using data on 114 firms is shown in Figure 9.2. The bar below the graph indicates the number of firms in each interval. Below 19.8 billion kWh (left arrow in graph), significant economies of scale were found to exist. The 97 firms in this range accounted for 48.7 percent of the total output. Between 19.8 and 67.1 billion kWh (right arrow in the graph), no significant economies of scale were present. The 16 firms in this range accounted for 44.6 percent of the total output. Above 67.1 billion kWh, diseconomies of scale (one firm and 6.7 percent of total output) were found.

In contrast, hydroelectric power plants, have few variable costs of any kind. Instead, essentially all the costs are fixed costs associated with buying the land that will be flooded, constructing the dam, and purchasing the huge electrical generator equipment. Thereafter, the only variable inputs required are a few lubricants and maintenance workers. Consequently, a hydroelectric power plant has long-run average total costs that decline continuously as the company spreads its enormous fixed cost over additional sales by supplying power to more and more households. Similarly, electric distribution lines (the high-tension power grids and neighborhood electrical conduits) are a high-fixed-cost and low- variable-cost operation. In the electrical utility industry, large-scale operations therefore incur lower unit cost than small-scale operations, as demonstrated in Figure 9.2.

“Freewheeling” in the electrical utility industry has similar effects. When industrial and commercial electricity buyers (e.g., a large assembly plant or hospital) were allowed in January 2003 to contract freely with low-cost power suppliers elsewhere in the state or even several states away, the local public utility experienced “stranded costs.” That is, the high initial fixed costs of constructing dams, power plants, and distribution lines were left behind as sales volume declined and local customers opted out. If the costs

Example

Scale Economies in the Traditional Cable Industry: Time-Warner

Telephone landlines and traditional cable TV businesses have cost characteristics similar to electric utilities. Once the wires have been put in place, the incremental cost of extending TV or telephone service to another household is small. The extent of the scale economies in such industries may warrant licensing only one cable company or one local telephone service provider. In fact, municipalities have historically issued an exclusive service contract to such public utilities. The rationale was that one firm could service the whole market at much lower cost than several firms dividing the market and failing therefore to realize all of the available scale economies.

However, remember that the optimal scale of operation of any facility, even a declining cost facility, is limited by the extent of the market. The expansion of the cable TV market has always been limited by the availability of videocassette recorders, DVD players, and services such as NetFlix because they are inexpensive, convenient entertainment substitutes. As a result, the potential scale economies suggested by industrial engineering studies of cable TV operations have never been fully realized.

In addition, both telephone and cable TV companies are now facing new wireless alternative technologies. Satellite-based digital television and cell phones have cut deeply into the market once reserved exclusively for monopoly licensed communications companies. As a result, the average unit cost in these cable-based businesses increased from B to A as volume declined (see Figure 9.3). Consequently, the price required to break even has necessarily risen. Of course, that sets in motion a vicious circle; the higher the cost-covering price, the more customers the cable TV and telephone companies lose to wireless alternatives.

involved had been mostly variable, the local power utilities could have simply cut costs and operated profitably at smaller scale. Unfortunately, however, the costs are mostly fixed and unavoidable, so unit costs will unavoidably rise as the number of customers served declines. Consequently, the advantages of additional competition for lowering prices to consumers are projected to be almost completely offset by the rise in unit costs caused by reduced scale.

Economies of Scale versus Economies of Scope

Economies of scale occur whenever the cost of producing two (or more) products jointly by one plant or firm is less than the cost of producing these products separately by different plants or firms.

Economies of scope occur whenever the cost of producing two (or more) products jointly is less than the cost of producing these products separately by different plants or firms.

Engineering Cost Techniques

Engineering cost techniques provide an alternative way to estimate long-run cost functions without using accounting cost data. Using production data, the engineering

approach attempts to determine the least-cost combination of labor, capital equipment, and raw materials required to produce various levels of output. Engineering methods offer a number of advantages over statistical methods in examining economies of scale. First, it is generally much easier with the engineering approach to hold constant such factors as input prices, product mix, and product efficiency, allowing one to isolate the effects on costs of changes in output. Second, use of the engineering method avoids some of the cost-allocation and depreciation problems encountered when using accounting data.

Example

Economies of Scope in the Banking Industry

A number of empirical studies have attempted to estimate economies of scale and scope in the banking industry, which includes commercial banks, savings and loan associations, and credit unions. A survey article by Jeffrey Clark compiled the results of 13 of these studies. Possible sources of production economies in financial institutions include the following:

- **Specialized labor.** A larger depository institution may be able to employ more specialized labor (e.g., computer programmers, cash managers, investment specialists, and loan officers) in producing its services. If the expertise of these workers results in the processing of a higher volume of deposit and loan accounts per unit of labor, then larger institutions will experience lower per-unit labor costs compared with smaller institutions.

- **Computer and telecommunications technology.** Once the large setup, or fixed, costs are incurred, computer and electronic funds transfer systems can be used to process additional transactions at small additional costs per transaction. Spreading the fixed costs over a higher volume of transactions may permit the larger firm to achieve lower average total costs.

- **Information.** Credit information about loan applicants must be gathered and analyzed before lending decisions are made. However, once gathered, this credit information can be reused, usually at little additional cost, in making decisions about lending to the institution’s customers. For example, credit information gathered in making mortgage loans can also be used in making automobile and other personal loans. Thus, larger financial institutions, which offer a wide array of different types of credit, may realize economies of scope in information gathering. That is, the cost of mortgage and auto installment lending done jointly is lower than the total cost of both when each is done separately.

All the studies reviewed by Clark employed a logarithmic cost function. The following conclusions were derived:

- Some evidence indicates economies of scale between consumer and mortgage lending.

- Significant overall (i.e., firm-specific) economies of scale occur only at relatively low levels of output (less than $100 million in deposits). Beyond that point, most studies found an L-shaped long-run average cost curve where average total cost falls steeply at low levels of output and then flattens out and becomes horizontal. In this respect, banking LRAC closely mirrors the shape of the LRAC in representative manufacturing.

The Survivor Technique: Steel Production

The survivor technique has been used to examine the long-run cost functions in steel ingot production by open-hearth or Bessemer processes. Based on the data in Table 9.1, Stigler developed the sleigh-shaped long-run average cost function for steel ingot production shown in Figure 9.4. Because of the declining percentages at the lowest levels of output and at extremely high levels of output, Stigler concluded that both were relatively inefficient size classes. The intermediate size classes (from 2.5 to 27.5 percent of industry capacity) represented the range of optimum size because these size classes grew or held their shares of capacity. Stigler also applied the survivor technique to the automobile industry and found an L-shaped average cost curve, indicating no evidence of diseconomies of scale at large levels of output.

Table 9.1 Distribution of Steel Ingot Capacity by Relative Size of Company

<table>
<thead>
<tr>
<th>Company Size (Percentage of Total Industry Capacity)</th>
<th>Percentage of Industry Capacity</th>
<th>Number of Companies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1930</td>
<td>1938</td>
</tr>
<tr>
<td>Under ½</td>
<td>7.16</td>
<td>6.11</td>
</tr>
<tr>
<td>½ to 1</td>
<td>5.94</td>
<td>5.08</td>
</tr>
<tr>
<td>1 to 2½</td>
<td>13.17</td>
<td>8.30</td>
</tr>
<tr>
<td>2½ to 5</td>
<td>10.64</td>
<td>16.59</td>
</tr>
<tr>
<td>5 to 10</td>
<td>11.18</td>
<td>14.03</td>
</tr>
<tr>
<td>10 to 25</td>
<td>13.24</td>
<td>13.99</td>
</tr>
<tr>
<td>25 and over</td>
<td>38.67</td>
<td>35.91</td>
</tr>
</tbody>
</table>

In a study designed to isolate the various sources of scale economies within a plant, Haldi and Whitcomb collected data on the cost of individual units of equipment, the initial investment in plant and equipment, and on operating costs. They noted that “in many basic industries such as petroleum refining, primary metals, and electric power, economies of scale are found in very large plant sizes (often the largest built or contemplated).” Few (if any) firms were observed operating beyond these minimum efficient scale plant sizes.

The Survivor Technique

It is also possible to detect the presence of scale economies or diseconomies without having access to any cost data. The survivor technique involves classifying the firms in an industry by size and calculating the share of industry output coming from each size class over time. If the share decreases over time, then this size class is presumed to be relatively inefficient and to have higher average costs. Conversely, an increasing share indicates that the size class is relatively efficient and has lower average costs. The rationale for this approach is that competition will tend to eliminate those firms whose size is relatively inefficient, allowing only those size firms with lower average costs to survive.

Despite its appeal, the survivor technique does have one serious limitation. Because the technique does not use actual cost data in the analysis, it cannot assess the magnitude of the cost differentials between firms of varying size and efficiency.

A Cautionary Tale

One final note of caution: The concept of average total costs (ATC) per unit of output (i.e., so-called unit costs), so prominent in our recent discussion of scale economies, is seldom useful for managerial decision making. Indeed, making output or pricing decisions based on ATC is dead wrong. AVC and marginal cost determine optimal shutdown, optimal output, and optimal price decisions. Managers in prominent companies like British Telephone have been fired over this mistake when they included headquarters expense and other corporate overhead in a pricing decision for an incremental new account. So, get in the habit of avoiding the use of unit costs in your decision problem reasoning. Reserve unit costs for describing, debating, and planning issues related to scale economies and diseconomies alone.

BREAK-EVEN ANALYSIS

Many of the planning activities that take place within a firm are based on anticipated levels of output. The study of the interrelationships among a firm’s sales, costs, and operating profit at various anticipated output levels is known as break-even analysis.

Break-even analysis is based on the revenue-output and cost-output functions of microeconomic theory. These functions are shown together in Figure 9.5. Total revenue is equal to the number of units of output sold multiplied by the price per unit. Assuming that the firm can sell additional units of output only by lowering the price, the total revenue curve TR will be concave (inverted U shaped), as indicated in Figure 9.5.

The difference between total revenue and total cost at any level of output represents the total profit that will be obtained. In Figure 9.5, total profit TP at any output level is given by the vertical distance between the total revenue TR and total cost TC curves. A break-even situation (zero profit) occurs whenever total revenue equals total cost. Below an output level of Q1, losses will be incurred because TR < TC. Between Q1 and Q3,

profits will be obtained because \(TR > TC \). At output levels above \(Q_3 \), losses will occur again because \(TR < TC \). Total profits are maximized within the range of \(Q_1 \) to \(Q_3 \); the vertical distance between the \(TR \) and \(TC \) curves is greatest at an output level of \(Q_2 \).

We now discuss both a graphical and an algebraic method of solving break-even problems.

Graphical Method

Constant selling price per unit and a constant variable cost per unit yield the linear \(TR \) and \(TC \) functions illustrated in Figure 9.6, which shows a basic linear break-even chart. Total cost is computed as the sum of the firm’s fixed costs \(F \), which are independent of
the output level, and the variable costs, which increase at a constant rate of VC per unit of output. Operating profit is equal to the difference between total revenues (TR) and total (operating) costs (TC).

The break-even point occurs at point Q_b in Figure 9.5, where the total revenue and the total cost functions intersect. If a firm’s output level is below this break-even point (i.e., if $TR < TC$), it incurs operating losses. If the firm’s output level is above this break-even point (if $TR > TC$), it realizes operating profits.

Algebraic Method

To determine a firm’s break-even point algebraically, one must set the total revenue and total (operating) cost functions equal to each other and solve the resulting equation for the break-even volume. Total revenue is equal to the selling price per unit times the output quantity:

$$TR = P \times Q$$ \[9.8\]

Total (operating) cost is equal to fixed plus variable costs, where the variable cost is the product of the variable cost per unit times the output quantity:

$$TC = F + (V \times Q)$$ \[9.9\]

Setting the total revenue and total cost expressions equal to each other and substituting the break-even output Q_b for Q results in

$$TR = TC$$

or

$$PQ_b = F + VQ_b$$ \[9.10\]

Finally, solving Equation 9.10 for the break-even output Q_b yields13

13Break-even analysis also can be performed in terms of dollar sales rather than units of output. The break-even dollar sales volume S_b, can be determined by the following expression:

$$S_b = \frac{F}{1 - V/P}$$

where V/P is the variable cost ratio (calculated as variable cost per dollar of sales).
The difference between the selling price per unit and the variable cost per unit, \(P - V \), is referred to as the contribution margin. It measures how much each unit of output contributes to meeting fixed costs and operating profits. Thus, the break-even output is equal to the fixed cost divided by the contribution margin.

\[
\begin{align*}
PQ_b - VQ_b &= F \\
(P - V)Q_b &= F \\
Q_b &= \frac{F}{P - V}
\end{align*}
\]

[9.11]

Example

Break-Even Analysis: Allegan Manufacturing Company

Assume that Allegan manufactures one product, which it sells for $250 per unit \(P \). Variable costs \(V \) are $150 per unit. The firm’s fixed costs \(F \) are $1 million. Substituting these figures into Equation 9.11 yields the following break-even output:

\[
Q_b = \frac{1,000,000}{250 - 150} = 10,000 \text{ units}
\]

Allegan’s break-even output can also be determined graphically, as shown in Figure 9.7.

Another illustration would be to use break-even analysis to approve or reject a batch sale promotion. Suppose that in the previous example, the $1 million is a trade rebate to elicit better shelf location for Allegan’s product. If the estimated effect of this promotion is additional sales of 9,000 units, which is less than the break-even output, the change in total contributions will fall below the $1 million promotion cost (i.e., \([250 - 150] \times 9,000 < 1,000,000 \)). Therefore, the promotion plan should be rejected.

Because a firm’s break-even output is dependent on a number of variables—in particular, the price per unit, variable (operating) costs per unit, and fixed costs—the firm may wish to analyze the effects of changes in any of the variables on the break-even output. For example, it may wish to consider either of the following:

1. Change the selling price.
2. Substitute fixed costs for variable costs.

Example

Break-Even Analysis: Allegan Manufacturing Company (continued)

Assume that Allegan increased the selling price per unit \(P' \) by $25 to $275. Substituting this figure into Equation 9.11 gives a new break-even output:

\[
Q'_b = \frac{1,000,000}{275 - 150} = 8,000 \text{ units}
\]

(Continued)
This outcome can also be seen in Figure 9.8, in which an increase in the price per unit increases the slope of the total revenue function TR/Q and reduces the break-even output.

Rather than increasing the selling price per unit, Allegan’s management may decide to substitute fixed costs for variable costs in some aspect of the company’s operations. For example, as labor wage rates increase over time, many firms seek to reduce operating costs through automation, which in effect represents the substitution of fixed-cost capital equipment for variable-cost labor. Suppose Allegan determines that it can reduce labor costs by $25 per unit by leasing $100,000 of additional equipment. Under these conditions, the firm’s new level of fixed costs F' would be $1,000,000 + $100,000 = $1,100,000. Variable costs per unit V' would be $150 − $25 = $125. Substituting $P = $250 per unit, $V' = $125 per unit, and $F' = $1,100,000 into Equation 9.11 yields a new break-even output:

$$Q'_b = \frac{\$1,000,000}{\$250 - \$125} = 8,800 \text{ units}$$

Graphically, the effect of this change in cost fixity of the operations is to raise the intercept on the vertical axis, decrease the slope of the total (operating) cost function TC', and reduce the break-even output.
FIGURE 9.8 Linear Break-Even Analysis Chart for the Allegan Manufacturing Company Showing the Effects of a Price Increase

Example

Fixed Costs and Production Capacity at General Motors

In an industry with 17 million unit sales annually, GM admitted in March 2002 that it needed to reduce automobile production capacity by 1 million cars per year to match its current sales of 5 million cars. It represented the second time in its 100-year history (1988 being the earlier event) that the company had significantly shrunk its capacity. As part of its decision to reduce its size, GM planned to close 10 of its U.S. automobile assembly lines.

In the past, GM alternated between (1) building all the cars it could produce and then using costly clearance sales to attract buyers, and (2) reducing output by running plants below capacity through a slowdown in the pace of the assembly line or elimination of an entire shift. The new strategy called for the company to use 100 percent of its American automobile production capacity five days a week with two shifts per day. If automobile demand increased above this capacity level, third-shift operations would be used to boost production. Ford had been following this strategy for some time.

In effect, GM and Ford were trading off lower fixed costs over the entire business cycle against (the possibility of) having to incur higher variable costs (e.g., use of higher cost overtime and third-shift operations) during periods of strong demand. As a consequence, GM’s break-even output point declined sharply.

Doing a Break-Even versus a Contribution Analysis

A break-even analysis assumes that all types of costs except the narrowly defined incremental variable cost \((V)\) of additional unit sales are avoidable and asks the question of whether sufficient unit sales are available at the contribution margin \((P - V)\) to cover all these relevant costs. If so, they allow the firm to earn a net profit. These questions normally arise at entry and exit decision points where a firm can avoid essentially all its costs if the firm decides to stay out or get out of a business. Contribution analysis, in contrast, applies to questions such as whether to adopt an advertising campaign, introduce a new product, shut down a plant temporarily, or close a division. What distinguishes these contribution analysis questions is that many fixed costs remain unavoidable and are therefore irrelevant to the decision (indirect fixed costs), while other fixed costs will be newly committed as a result of the decision (direct fixed costs) and therefore could be avoided by refusing to go ahead with the proposal.

More generally, contribution analysis always asks whether enough additional revenue arises from the ad campaign, the new product, or the projected sales of the plant or division to cover the direct fixed plus variable costs. That is, contribution analysis calculates whether sufficient gross operating profits result from the incremental sales \((\Delta Q)\) attributable to the ad, the new product, or the promotion to offset the proposed increase in fixed cost. In other words, are the total contributions to cover fixed cost increased by an amount greater than the increase in direct fixed cost avoidable by the decision?

\[
(P - V) \Delta Q > \Delta \text{Total Fixed Cost} \\
> \Delta \text{Indirect Fixed Cost} + \Delta \text{Direct Fixed Cost} \\
> 0 + \Delta \text{Direct Fixed Cost}
\]

Such decisions are not break-even decisions because they ignore (abstract from) the indirect fixed costs that, by definition, cannot be avoided by rejecting the ad campaign or new product introduction proposal or by closing the plant temporarily. For example, headquarters facility cost and other corporate overhead are indirect fixed costs that cannot be avoided by any of these decisions. So, corporate overhead is not a relevant cost in making these decisions and is therefore ignored in the contribution analysis done to support making such decisions.

In contrast, corporate overhead is prominent in the preceding examples of break-even analysis done to decide how or whether to enter a new business in the first place. Business certification, licensing, or franchise fees would be a good example of this concept of corporate overhead. The case exercise on charter airline operating decisions at the end of this chapter illustrates the use of contribution analysis as distinguished from break-even analysis.

Some Limitations of Break-Even and Contribution Analysis

Break-even analysis has a number of limitations that arise from the assumptions made in constructing the model and developing the relevant data.

Composition of Operating Costs In doing break-even analysis, one assumes that costs can be classified as either fixed or variable. In fact, some costs are partly fixed and partly variable (e.g., utility bills). Furthermore, some fixed costs increase in a stepwise manner as output is increased; they are semivariable. For example, machinery maintenance is scheduled after 10 hours or 10 days or 10 weeks of use. These direct fixed costs must be considered variable if a batch production decision entails this much use.
Multiple Products

The break-even model also assumes that a firm is producing and selling either a single product or a constant mix of different products. In many cases the product mix changes over time, and problems can arise in allocating fixed costs among the various products.

Uncertainty

Still another assumption of break-even analysis is that the selling price and variable cost per unit, as well as fixed costs, are known at each level of output. In practice, these parameters are subject to uncertainty. Thus, the usefulness of the results of break-even analysis depends on the accuracy of the estimates of the future selling price and variable cost.

Inconsistency of Planning Horizon

Finally, break-even analysis is normally performed for a planning period of one year or less; however, the benefits received from some costs may not be realized until subsequent periods. For example, research and development costs incurred during a specific period may not result in new products for several years. For break-even analysis to be a dependable decision-making tool, a firm’s operating costs must be matched with resulting revenues for the planning period under consideration.

Operating Leverage

Operating leverage involves the use of assets that have fixed costs. A firm uses operating leverage in the hope of earning returns in excess of the fixed costs of the assets, thereby increasing the returns to the owners of the firm. A firm’s degree of operating leverage (DOL) is defined as the multiplier effect resulting from the firm’s use of fixed operating costs. More specifically, DOL can be computed as the percentage change in earnings before interest and taxes (EBIT) resulting from a given percentage change in sales (output):

\[
DOL = \frac{\text{Percentage change in EBIT}}{\text{Percentage change in Sales}}
\]

Example

Taco Bell Chihuahua Drives Sales

Consider the Taco Bell ad campaign with the cute little dog that was designed to pulse twenty-five 15-second spot commercials over several weeks. The ad agency quoted a cost of $750,000 per spot to secure prime-time network television reaching 176 million households. To decide whether to buy this ad campaign, we need to know just two things: (1) the incremental sales that demand analysis suggests will be stimulated by this campaign and (2) the contribution margin in dollars. Suppose the incremental sales are estimated at 2,100 Taco Bell meals per day for 90 days across 48 states, totaling 9,072,000 meals. If $7.99 is the average price per realized unit sale and variable costs are $5.00, should Taco Bell go ahead with the ad? The answer is yes, because when we apply Equation 9.12,

\[
(7.99 - 5.00) \times 9,072,200 > 0 + (25 \times 750,000)\\
27,125,280 > 18,750,000
\]

we see that Taco Bell would increase its operating profit by $8.4 million and make further contributions toward covering fixed cost and profit if it authorized the proposed ad campaign.
This relationship can be rewritten as follows:

\[
\text{DOL at } Q = \frac{\Delta \text{EBIT}}{\Delta \text{Sales}} \quad \frac{\text{EBIT}}{\text{Sales}}
\]

[9.13]

where \(\Delta \text{EBIT} \) and \(\Delta \text{Sales} \) are the changes in the firm’s EBIT and Sales, respectively.

Because a firm’s DOL differs at each sales level, it is necessary to indicate the sales point, \(Q \), at which operating leverage is measured. The degree of operating leverage is analogous to the elasticity of demand concept (e.g., price and income elasticities) because it relates percentage changes in one variable (EBIT) to percentage changes in another variable (sales). Equation 9.13 requires the use of two different values of sales and EBIT. Another equation (derived from Equation 9.13) that can be used to compute a firm’s DOL more easily is

\[
\text{DOL at } Q = \frac{\text{Sales} - \text{Variable costs}}{\text{EBIT}}
\]

[9.14]

The variables defined in the previous section on break-even analysis can also be used to develop a formula for determining a firm’s DOL at any given output level. Because sales are equivalent to \(TR \) (or \(P \times Q \)), variable cost is equal to \(V \times Q \), and EBIT is equal to total revenue (\(TR \)) less total (operating) cost, or \((P \times Q) - F - (V \times Q) \), these values can be substituted into Equation 9.14 to obtain the following:

\[
\text{DOL at } Q = \frac{(P \cdot Q) - (V \cdot Q)}{(P \cdot Q) - F - (V \cdot Q)}
\]

or

\[
\text{DOL at } Q = \frac{(P - V)Q}{(P - V)Q - F}
\]

[9.15]

Business Risk

Business risk refers to the inherent variability or uncertainty of a firm’s EBIT. It is a function of several factors, one of which is the firm’s DOL. The DOL is a measure of how sensitive a firm’s EBIT is to changes in sales. The greater a firm’s DOL, the larger the change in EBIT will be for a given change in sales. Thus, all other things being equal, the higher a firm’s DOL, the greater the degree of business risk.

Other factors can also affect a firm’s business risk, including the variability or uncertainty of sales. A firm with high fixed costs and stable sales will have a high DOL, but it will also have stable EBIT and, therefore, low business risk. Public utilities and pipeline transportation companies are examples of firms having these operating characteristics.

Another factor that may affect a firm’s business risk is uncertainty concerning selling prices and variable costs. A firm having a low DOL can still have high business risk if selling prices and variable costs are subject to considerable variability over time. A cattle feedlot illustrates these characteristics of low DOL but high business risk; both grain costs and the selling price of beef at times fluctuate wildly.

In summary, a firm’s DOL is only one of several factors that determine the firm’s business risk.
Example

Operating Leverage: Allegan Manufacturing Company (continued)

In the earlier discussion of break-even analysis for the Allegan Manufacturing Company, the parameters of the break-even model were determined as $P = 250/\text{unit}$, $V = 150/\text{unit}$, and $F = 1,000,000$. Substituting these values into Equation 9.15 along with the respective output (Q) values yields the DOL values shown in Table 9.2. For example, a DOL of 6.00 at an output level of 12,000 units indicates that from a base output level of 12,000 units EBIT will increase by 6.00 percent for each 1 percent increase in output.

Note that Allegan’s DOL is largest (in absolute value terms) when the firm is operating near the break-even point (where $Q = Q_b = 10,000$ units). Note also that the firm’s DOL is negative below the break-even output level. A negative DOL indicates the percentage reduction in operating losses that occurs as the result of a 1 percent increase in output. For example, the DOL of -1.50 at an output level of 6,000 units indicates that from a base output level of 6,000 units the firm’s operating losses will be reduced by 1.5 percent for each 1 percent increase in output.

A firm’s DOL is a function of the nature of the production process. If the firm employs large amounts of equipment in its operations, it tends to have relatively high fixed operating costs and relatively low variable operating costs. Such a cost structure yields a high DOL, which results in large operating profits (positive EBIT) if sales are high and large operating losses (negative EBIT) if sales are depressed.

<table>
<thead>
<tr>
<th>TABLE 9.2</th>
<th>DOL AT VARIOUS OUTPUT LEVELS FOR ALLEGAN MANUFACTURING COMPANY</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUTPUT (Q)</td>
<td>DEGREE OF OPERATING LEVERAGE (DOL)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2,000</td>
<td>-0.25</td>
</tr>
<tr>
<td>4,000</td>
<td>-0.67</td>
</tr>
<tr>
<td>6,000</td>
<td>-1.50</td>
</tr>
<tr>
<td>8,000</td>
<td>-4.00</td>
</tr>
<tr>
<td>10,000</td>
<td>(undefined) Break-even level</td>
</tr>
<tr>
<td>12,000</td>
<td>+6.00</td>
</tr>
<tr>
<td>14,000</td>
<td>+3.50</td>
</tr>
<tr>
<td>16,000</td>
<td>+2.67</td>
</tr>
<tr>
<td>18,000</td>
<td>+2.25</td>
</tr>
<tr>
<td>20,000</td>
<td>+2.00</td>
</tr>
</tbody>
</table>

Break-Even Analysis and Risk Assessment

The break-even unit sales figure can also be used to assess the business risk to which a firm is exposed. If one forecasts the mean unit sales for some future period of time, the standard deviation of the distribution of unit sales, and makes an assumption about how
actual sales are distributed, one can compute the probability that the firm will have operating losses, meaning it will sell fewer units than the break-even level.

The probability of having operating losses (selling fewer than \(Q_b \) units) can be computed using the following equation and the standard normal probability distribution as

\[
 z = \frac{Q_b - \overline{Q}}{\sigma_Q}
\]

where the probability values are from Table 1 in Appendix B, \(\overline{Q} \) is the expected unit sales, \(\sigma_Q \) is the standard deviation of unit sales, and \(Q_b \) is (as defined earlier) the break-even unit sales. The probability of operating profits (selling more than \(Q_b \) units) is equal to 1 minus the probability of operating losses.

Example

Business Risk Assessment: Allegan Manufacturing Company (continued)

For the Allegan Manufacturing Company discussed earlier, suppose that expected sales are 15,000 units with a standard deviation of 4,000 units. Recall that the break-even volume was 10,000 units. Substituting \(Q_b = 10,000 \), \(\overline{Q} = 15,000 \), and \(\sigma_Q = 4,000 \) into Equation 9.16 yields

\[
 z = \frac{10,000 - 15,000}{4,000} = -1.25
\]

In other words, the break-even sales level of 10,000 units is 1.25 standard deviations below the mean. From Table 1 in Appendix B, the probability associated with 1.25 standard deviations is 0.1056 or 10.56 percent. Thus, Allegan faces a 10.56 percent chance that it will incur operating losses and an 89.44 percent chance (100 – 10.56 percent chance of losses) that it will record operating profits from selling more than the break-even number of units of output.

SUMMARY

- In estimating the behavior of short-run and long-run cost functions for firms, the primary methodological problems are (1) differences in the manner in which economists and accountants define and measure costs and (2) accounting for other variables (in addition to the output level) that influence costs.
- Many statistical studies of short-run cost-output relationships suggest that total costs increase linearly (or quadratically) with output, implying constant (or rising) marginal costs over the observed ranges of output.
- Many statistical studies of long-run cost-output relationships indicate that long-run cost functions are L-shaped. Economies of scale (declining average costs) occur at low levels of output. Thereafter, long-run average costs remain relatively constant over large ranges of output. Diseconomies of scale are observed in only a few cases, probably because few firms can survive with costs attributable to excessive scale.
- Engineering cost techniques are an alternative approach to statistical methods in estimating long-run cost functions. With this approach, knowledge
of production facilities and technology is used to determine the least-cost combination of labor, capital equipment, and raw materials required to produce various levels of output.

- The survivor technique is a method of determining the optimum size of firms within an industry by classifying them by size and then calculating the share of industry output coming from each size class over time. Size classes whose share of industry output is increasing over time are considered to be more efficient and to have lower average costs.

- Break-even analysis is used to examine the relationship among a firm’s revenues, costs, and operating profits (EBIT) at various output levels. Frequently the analyst constructs a break-even chart based on linear cost-output and revenue-output relationships to determine the operating characteristics of a firm over a limited output range.

- The break-even point is defined as the output level at which total revenues equal total costs of operations. In the linear break-even model, the break-even point is found by dividing fixed costs by the difference between price and variable cost per unit, the contribution margin.

- Contribution analysis is used to examine operating profitability when some fixed costs (indirect fixed costs) cannot be avoided and other direct fixed costs can be avoided by a decision. Decisions on advertising, new product introduction, shutdown, and downsizing are often made by doing a contribution analysis.

- Operating leverage occurs when a firm uses assets having fixed operating costs. The degree of operating leverage (DOL) measures the percentage change in a firm’s EBIT resulting from a 1 percent change in sales (or units of output). As a firm’s fixed operating costs rise, its DOL increases.

- Business risk refers to the variability of a firm’s EBIT. It is a function of several factors, including the firm’s DOL and the variability of sales. All other things being equal, the higher a firm’s DOL, the greater is its business risk.

Exercises

Answers to the exercises in blue can be found in Appendix C at the back of the book.

1. A study of 86 savings and loan associations in six northwestern states yielded the following cost function: \(^{15}\)

 \[
 C = 2.38 - 0.006153Q + 0.00005359Q^2 + 19.2X_1
 \]

 where \(C\) = average operating expense ratio, expressed as a percentage and defined as total operating expense ($ million) divided by total assets ($ million) times 100 percent

 \(Q\) = output, measured by total assets ($million)

 \(X_1\) = ratio of the number of branches to total assets ($million)

 Note: The number in parentheses below each coefficient is its respective t-statistic.

 a. Which variable(s) is(are) statistically significant in explaining variations in the average operating expense ratio?

 b. What type of cost-output relationship (e.g., linear, quadratic, or cubic) is suggested by these statistical results?

 c. Based on these results, what can we conclude about the existence of economies or diseconomies of scale in savings and loan associations in the Northwest?

2. Referring to Exercise 1 again:
 a. Holding constant the effects of branching \((X_1)\), determine the level of total assets that minimizes the average operating expense ratio.
 b. Determine the average operating expense ratio for a savings and loan association with the level of total assets determined in Part (a) and 1 branch. Same question for 10 branches.

3. A study of the costs of electricity generation for a sample of 56 British firms in 1946–1947 yielded the following long-run cost function:¹⁶

\[
AVC = 1.24 + 0.0033Q + 0.000029Q^2 - 0.00046QZ - 0.026Z + 0.00018Z^2
\]

where \(AVC\) = average variable cost (i.e., working costs of generation), measured in pence per kilowatt-hour (kWh). (A pence was a British monetary unit equal, at that time, to 2 cents U.S.)

- \(Q\) = output, measured in millions of kWh per year
- \(Z\) = plant size, measured in thousands of kilowatts

 a. Determine the long-run variable cost function for electricity generation.
 b. Determine the long-run marginal cost function for electricity generation.
 c. Holding plant size constant at 150,000 kilowatts, determine the short-run average variable cost and marginal cost functions for electricity generation.
 d. For a plant size equal to 150,000 kilowatts, determine the output level that minimizes short-run average variable costs.
 e. Determine the short-run average variable cost and marginal cost at the output level obtained in Part (d).

4. Assuming that all other factors remain unchanged, determine how a firm’s break-even point is affected by each of the following:
 a. The firm finds it necessary to reduce the price per unit because of increased foreign competition.
 b. The firm’s direct labor costs are increased as the result of a new labor contract.
 c. The Occupational Safety and Health Administration (OSHA) requires the firm to install new ventilating equipment in its plant. (Assume that this action has no effect on worker productivity.)

5. Cool-Aire Corporation manufactures a line of room air conditioners. Its break-even sales level is 33,000 units. Sales are approximately normally distributed. Expected sales next year are 40,000 units with a standard deviation of 4,000 units.
 a. Determine the probability that Cool-Aire will incur an operating loss.
 b. Determine the probability that Cool-Aire will operate above its break-even point.

6. McKee Corporation has annual fixed costs of $12 million. Its variable cost ratio is .60.
 a. Determine the company’s break-even dollar sales volume.
 b. Determine the dollar sales volume required to earn a target profit of $3 million.

¹⁶Johnston, Statistical Cost Analysis, Chapter 4, op. cit.
COST FUNCTIONS

The following cost-output data were obtained as part of a study of the economies of scale in operating a charter high school in Wisconsin: 17

<table>
<thead>
<tr>
<th>STUDENTS IN AVERAGE DAILY ATTENDANCE</th>
<th>MIDPOINT OF VALUES IN COLUMN A</th>
<th>OPERATING EXPENDITURE PER STUDENT</th>
<th>NUMBER OF SCHOOLS IN SAMPLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>143–200</td>
<td>171</td>
<td>$531.9</td>
<td>6</td>
</tr>
<tr>
<td>201–300</td>
<td>250</td>
<td>$480.8</td>
<td>12</td>
</tr>
<tr>
<td>301–400</td>
<td>350</td>
<td>$446.3</td>
<td>19</td>
</tr>
<tr>
<td>401–500</td>
<td>450</td>
<td>$426.9</td>
<td>17</td>
</tr>
<tr>
<td>501–600</td>
<td>550</td>
<td>$442.6</td>
<td>14</td>
</tr>
<tr>
<td>601–700</td>
<td>650</td>
<td>$413.1</td>
<td>13</td>
</tr>
<tr>
<td>701–900</td>
<td>800</td>
<td>$374.3</td>
<td>9</td>
</tr>
<tr>
<td>901–1,100</td>
<td>1,000</td>
<td>$433.2</td>
<td>6</td>
</tr>
<tr>
<td>1,101–1,600</td>
<td>1,350</td>
<td>$407.3</td>
<td>6</td>
</tr>
<tr>
<td>1,601–2,400</td>
<td>2,000</td>
<td>$405.6</td>
<td>7</td>
</tr>
</tbody>
</table>

Questions

1. Plot the data in columns B and C in an output (enrollment-) cost graph and sketch a smooth curve that would appear to provide a good fit to the data.

2. Based on the scatter diagram in Question 1, what kind of mathematical relationship would appear to exist between enrollment and operating expenditures per student? In other words, do operating expenditures per student appear to (i) be constant (and independent of enrollment), (ii) follow a linear relationship as enrollment increases, or (iii) follow some sort of nonlinear U-shape (possibly quadratic) relationship as enrollment increases?

As part of this study, the following cost function was developed:

\[C = f(Q, X_1, X_2, X_3, X_4, X_5) \]

where \(C \) = operating expenditures per student in average daily attendance (measured in dollars)

\(Q \) = enrollment (number of students in average daily attendance)

\(X_1 \) = average teacher salary

\(X_2 \) = number of credit units ("courses") offered

\(X_3 \) = average number of courses taught per teacher

\(X_4 \) = change in enrollment between 1957 and 1960

\(X_5 \) = percentage of classrooms built after 1950

Variables \(X_1, X_2, \) and \(X_3 \) were considered measures of teacher qualifications, breadth of curriculum, and the degree of specialization in instruction, respectively. Variable \(X_4 \) measured changes in demand for school services that could cause some lagging adjustments in cost. Variable \(X_5 \) was used to reflect any

differentials in the costs of maintenance and operation due to the varying ages of school properties. Statistical data on 109 selected high schools yielded the following regression equation:

\[C = 10.31 - 0.402Q + 0.00012Q^2 + 0.107X_1 + 0.985X_2 + 15.62X_3 + 0.613X_4 - 0.102X_5 \]

\[(6.4)^* (5.2)^* (8.2)^* (1.5) (1.3) (3.2)^* (0.93) \]

\[r^2 = 0.557 \]

Notes: The numbers in parentheses are the t-scores of each of the respective (b) coefficients. An asterisk (*) indicates that the result is statistically significant at the 0.01 level.

3. What type of cost-output relationship (linear, quadratic, cubic) is suggested by these statistical results?
4. What variables (other than enrollment) would appear to be most important in explaining variations in operating expenditures per student?
5. Holding constant the effects of the other variables (X_1 through X_3), determine the enrollment level (Q) at which average operating expenditures per student are minimized. (Hint: Find the value of Q that minimizes the \((\partial C/\partial Q)\) function.)
6. Again, holding constant the effects of the other variables, use the \((\partial C/\partial Q)\) function to determine, for a school with 500 students, the reduction in per-student operating expenditures that will occur as the result of adding one more student.
7. Again, holding the other variables constant, what would be the saving in per-student operating expenditures of an increase in enrollment from 500 to 1,000?
8. Based on the results of this study, what can we conclude about the existence of economies or diseconomies in operating a public high school?

Chapter 9: Applications of Cost Theory

CHARTER AIRLINE OPERATING DECISIONS

Firm-specific demand in the **scheduled airline industry** is segmented by customer class and is highly uncertain so that an order may not lead to realized revenue and a unit sale. Airlines respond to this dynamic, highly competitive environment by tracking reservations at preannounced fares and reassigning capacity to the various market segments ("buckets") as business travelers, vacationers, and convention groups book the flights above or below expected levels several days and even weeks before scheduled departure. This systems management process combining marketing, operations, and finance is referred to as revenue management or yield management and is discussed in Chapter 14.

The **charter airline business**, on the other hand, is much less complicated because capacity requirements are known far in advance, and all confirmed orders lead to realized revenue. We consider the following three decisions for a charter airline: (1) the entry/exit break-even decision, (2) the operate/shut down decision to fly/not fly a charter that has been proposed, and (3) the output decision as to how many incremental seats to sell if the airline decides to operate the charter flight.

Suppose the following costs for a 10-hour round-trip flight apply to the time frame and expenses of an unscheduled 5-hour charter flight from Baltimore to Las Vegas (and return the next day) on a seven-year-old Boeing 737-800 with 120 occupied
Some costs listed in the table have been aggregated up to the flight level from a seat-level decision where they are incurred. Others have been allocated down to the flight level from an entry/exit or maintain ownership company-level decision. Still other costs vary with the go/no go flight-level decision itself. Your job is to analyze each cost item and figure out the “behavior of cost”—that is, with which decision each cost varies.

<table>
<thead>
<tr>
<th>Cost Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel and landing fees</td>
<td>$5,200</td>
</tr>
<tr>
<td>Quarterly airframe maintenance re: FAA certificate</td>
<td>1,000</td>
</tr>
<tr>
<td>Unscheduled engine maintenance per 10 flight hours</td>
<td>1,200</td>
</tr>
<tr>
<td>Pro rata time depreciation for 7th year of airframe</td>
<td>7,200</td>
</tr>
<tr>
<td>Flight pay for pilots per round-trip flight</td>
<td>4,200</td>
</tr>
<tr>
<td>Long-term hangar facility lease</td>
<td>6,600</td>
</tr>
<tr>
<td>Annual aircraft engine operating lease</td>
<td>7,100</td>
</tr>
<tr>
<td>Base salaries of headquarters personnel</td>
<td>2,000</td>
</tr>
<tr>
<td>Food service with seat-by-seat purchase and JIT delivery at each departure</td>
<td>2,400</td>
</tr>
<tr>
<td>Airport ground crew baggage handling for two flight arrivals</td>
<td>450</td>
</tr>
</tbody>
</table>

Questions

1. What are the variable costs for the decision to send one more person aboard a charter flight that is already 80 percent booked?

2. In making an entry/exit decision, if competitive pressure is projected to force the price down to $300, what is the break-even unit sales volume this company should have projected as part of its business plan before entering this market and should reconsider each time it considers leaving (exiting) this business altogether?

3. Identify the indirect fixed costs of the charter service for a particular one of many such charters this month.

4. If one were trying to decide whether to operate (fly) or not fly an unscheduled round-trip charter flight, what would be the total direct fixed costs and variable costs of the flight?

5. Charter contracts are negotiable, and charter carriers receive many contract offers that do not promise $300 prices or 80-percent-full planes. Should the airline accept a charter flight proposal from a group that offers to guarantee the sale of 90 seats at $250? Why or why not?

6. What are the total contributions of the charter flight with 90 seats at $250 per seat?

7. What are the net income losses for this two-day period if the airline refuses the 90-seat charter, stays in business, but temporarily shuts down? What are the net income losses if it decides to operate and fly the charter that has been proposed?

8. What is the segment-level contribution of a separate group that is willing to join the 90-seat-at-$250-per-seat charter on the same plane and same departure, but only wishes to pay $50 per seat for 10 seats?

9. Should you accept their offer? What problems do you anticipate if both charter groups are placed on the 737?

Footnote:
The aerodynamics of the plane and its fuel efficiency do change as the number of seats occupied falls below 180, but you may ignore this effect.