Although aging is supposed to bring wisdom, almost no one wants to get old. Along with wisdom, aging brings wrinkles, loss of physical strength, and greater susceptibility to disease.

Why do we age? No one knows for certain, but many scientists think that oxidation plays a major role. The oxygen molecule and other oxidizing agents in the body apparently can extract single electrons from the large molecules that make up cell membranes, thus making them very reactive. Subsequently, these activated molecules can link up, changing the properties of the cell membrane. At some point, enough of these reactions have occurred that the body’s immune system comes to view the changed cell as an “enemy” and destroys it. This is particularly detrimental to the organism when the cells involved are irreplaceable. Nerve cells, for example, fall into this category. They rarely regenerate in an adult.

The body has defenses against oxidation, such as vitamin E, a well-known antioxidant. Studies have shown that red blood cells age much faster than normal when they are deficient in vitamin E. Based on studies such as these, some have suggested large doses of vitamin E as a preventive measure against aging, but there is no solid evidence that this practice has any impact on aging.

Another protective antioxidant found in our bodies is superoxide dismutase (SOD), which protects us from the superoxide ion O_2^-, a powerful oxidizing agent that is particularly damaging to vital enzymes. The importance of SOD in opposing the aging process is indicated from the results of a study by Dr. Richard Cutler at the Gerontology Research...
Center of the National Institutes of Health in Baltimore that showed a strong correlation between the life spans of a dozen mammalian species and their levels of SOD. Human SOD is now being produced by the techniques of biotechnology in amounts that will enable scientists to carefully study its effects on aging and on various diseases such as rheumatoid arthritis and muscular dystrophy. Although SOD is available in health food stores in forms to be taken orally, this practice is useless because the SOD is digested (broken down into simpler substances) before it can reach the bloodstream.

Research does indicate that consuming certain foods may retard the aging process. For example, a recent study of 8000 male Harvard graduates found that chocolate and candy eaters live almost a year longer than those who abstain. Although the researchers from Harvard School of Public Health are not certain of the mechanism for this effect, they suggest that the antioxidants present in chocolate may provide the health benefits. For example, chocolate contains phenols, antioxidants that are also present in wine, another substance that seems to promote good health if used in moderation.

Oxidation is only one possible cause for aging. Research continues on many fronts to try to discover why we get “older” as time passes.

Can eating chocolate slow down the aging process?